Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Advanced Diffusion Studies of Active Enzymes and Nanosystems
Paperback

Advanced Diffusion Studies of Active Enzymes and Nanosystems

$85.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Enzymes are fascinating chemical nanomachines that catalyze many reactions, which are essential for life. Studying enzymes is therefore important in a biological and medical context, but the catalytic potential of enzymes also finds use in organic synthesis. This thesis is concerned with the fundamental question whether the catalytic reaction of an enzyme or molecular catalyst can cause it to show enhanced diffusion. Diffusion measurements were performed with advanced fluorescence correlation spectroscopy (FCS) and diffusion nuclear magnetic resonance (NMR) spectroscopy techniques. The measurement results lead to the unraveling of artefacts in enzyme FCS and molecular NMR measurements, and thus seriously question several recent publications, which claim that enzymes and molecular catalysts are active matter and experience enhanced diffusion. In addition to these fundamental questions, this thesis also examines the use of enzymes as biocatalysts. A novel nanoconstruct - the enzyme-phage-colloid (E-P-C) - is presented, which utilizes filamentous viruses as immobilization templates for enzymes. E-P-Cs can be used for biocatalysis with convenient magnetic recovery of enzymes and serve as enzymatic micropumps. The latter can autonomously pump blood at physiological urea concentrations.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cuvillier
Date
3 February 2021
Pages
190
ISBN
9783736973640

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Enzymes are fascinating chemical nanomachines that catalyze many reactions, which are essential for life. Studying enzymes is therefore important in a biological and medical context, but the catalytic potential of enzymes also finds use in organic synthesis. This thesis is concerned with the fundamental question whether the catalytic reaction of an enzyme or molecular catalyst can cause it to show enhanced diffusion. Diffusion measurements were performed with advanced fluorescence correlation spectroscopy (FCS) and diffusion nuclear magnetic resonance (NMR) spectroscopy techniques. The measurement results lead to the unraveling of artefacts in enzyme FCS and molecular NMR measurements, and thus seriously question several recent publications, which claim that enzymes and molecular catalysts are active matter and experience enhanced diffusion. In addition to these fundamental questions, this thesis also examines the use of enzymes as biocatalysts. A novel nanoconstruct - the enzyme-phage-colloid (E-P-C) - is presented, which utilizes filamentous viruses as immobilization templates for enzymes. E-P-Cs can be used for biocatalysis with convenient magnetic recovery of enzymes and serve as enzymatic micropumps. The latter can autonomously pump blood at physiological urea concentrations.

Read More
Format
Paperback
Publisher
Cuvillier
Date
3 February 2021
Pages
190
ISBN
9783736973640