Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Constructing a Composite Vegetable Price Index using Modified Factor Analysis

$133.99
Sign in or become a Readings Member to add this title to your wishlist.

Master's Thesis from the year 2018 in the subject Biology - Miscellaneous, language: English, abstract: This study introduces a modified factor analysis approach to develop a composite vegetable price index. The new method uses scaling by dividing the original variables with its mean, a specific weight for each individual indicator variable and the index assigns a specific numerical value to prices of vegetables for a given month. Initially monthly wholesale prices of nineteen vegetables were considered. As some vegetable prices were highly correlated, ten representative variables for highly correlated variables were retained based on variable-cluster analysis and correlation analysis. Green Beans, Leeks, Cabbage, Tomatoes, Brinjals, Pumpkin, Cucumber, Luffa, Ash Plantains and Green Chili were the indicator variables considered in the index building process. Initially, the grouping pattern in the data was identified through a Preliminary Factor Analysis. This resulted in a single factor explaining a substantial amount of the total variance. The original variables were divided by their means to scale the variables. The weight corresponding to a particular indicator variable was defined by squaring the Eigen vector coefficient of the given variable of the first Principle Component. Then the scaled variables were weighted and used in the final Factor Analysis. A single factor explaining 69.8% of total variance was selected as the composite index. First, the Vegetable Price Index was defined as a linear function of the composite index. Then it was converted into a function of original indicator variables by summarizing constant terms to make it easy to update. Cronbach's alpha was used to verify the internal consistency of the indicator variables. Scaling in mean and weighting improved internal consistency of the variables.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Grin Verlag
Date
18 July 2019
Pages
44
ISBN
9783668982772

Master's Thesis from the year 2018 in the subject Biology - Miscellaneous, language: English, abstract: This study introduces a modified factor analysis approach to develop a composite vegetable price index. The new method uses scaling by dividing the original variables with its mean, a specific weight for each individual indicator variable and the index assigns a specific numerical value to prices of vegetables for a given month. Initially monthly wholesale prices of nineteen vegetables were considered. As some vegetable prices were highly correlated, ten representative variables for highly correlated variables were retained based on variable-cluster analysis and correlation analysis. Green Beans, Leeks, Cabbage, Tomatoes, Brinjals, Pumpkin, Cucumber, Luffa, Ash Plantains and Green Chili were the indicator variables considered in the index building process. Initially, the grouping pattern in the data was identified through a Preliminary Factor Analysis. This resulted in a single factor explaining a substantial amount of the total variance. The original variables were divided by their means to scale the variables. The weight corresponding to a particular indicator variable was defined by squaring the Eigen vector coefficient of the given variable of the first Principle Component. Then the scaled variables were weighted and used in the final Factor Analysis. A single factor explaining 69.8% of total variance was selected as the composite index. First, the Vegetable Price Index was defined as a linear function of the composite index. Then it was converted into a function of original indicator variables by summarizing constant terms to make it easy to update. Cronbach's alpha was used to verify the internal consistency of the indicator variables. Scaling in mean and weighting improved internal consistency of the variables.

Read More
Format
Paperback
Publisher
Grin Verlag
Date
18 July 2019
Pages
44
ISBN
9783668982772