Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Machine Learning Asset Valuation
Paperback

Machine Learning Asset Valuation

$269.99
Sign in or become a Readings Member to add this title to your wishlist.

Master’s Thesis from the year 2017 in the subject Business economics - Business Management, Corporate Governance, grade: 1,3, Zeppelin University Friedrichshafen (Chair of Econometrics and Finance), language: English, abstract: This Master Thesis introduces basic concepts and methods of Machine Learning as well as applying them on a virtual buy- or sell algorithm enabled by an accurately predicting classifier. In the first section, the historical development of Machine Learning is presented. Consequently, an array of classifiers is described in detail. The third section results in a python-based Machine Learning application of seven classifiers, a cross validation and in initializing the final valuation algorithm. The optimal classifier predicts following day Open Prizes for the S&P 500 with 72% accuracy outperforming market return by nearly 150% within the span of one month.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Grin Publishing
Date
23 August 2017
Pages
156
ISBN
9783668506282

Master’s Thesis from the year 2017 in the subject Business economics - Business Management, Corporate Governance, grade: 1,3, Zeppelin University Friedrichshafen (Chair of Econometrics and Finance), language: English, abstract: This Master Thesis introduces basic concepts and methods of Machine Learning as well as applying them on a virtual buy- or sell algorithm enabled by an accurately predicting classifier. In the first section, the historical development of Machine Learning is presented. Consequently, an array of classifiers is described in detail. The third section results in a python-based Machine Learning application of seven classifiers, a cross validation and in initializing the final valuation algorithm. The optimal classifier predicts following day Open Prizes for the S&P 500 with 72% accuracy outperforming market return by nearly 150% within the span of one month.

Read More
Format
Paperback
Publisher
Grin Publishing
Date
23 August 2017
Pages
156
ISBN
9783668506282