Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Ce livre des Elements de mathematique est consacre a la Topologie algebrique. Les quatre premiers chapitres presentent la theorie des revetements d'un espace topologique et du groupe de Poincare. On construit le revetement universel d'un espace connexe pointe delacable et on etablit l'equivalence de categories entre revetements de cet espace et actions du groupe de Poincare.
On demontre une version generale du theoreme de van Kampen exprimant le groupoide de Poincare d'un espace topologique comme un coegalisateur de diagrammes de groupoides. Dans de nombreuses situations geometriques, on en deduit une presentation explicite du groupe de Poincare.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Ce livre des Elements de mathematique est consacre a la Topologie algebrique. Les quatre premiers chapitres presentent la theorie des revetements d'un espace topologique et du groupe de Poincare. On construit le revetement universel d'un espace connexe pointe delacable et on etablit l'equivalence de categories entre revetements de cet espace et actions du groupe de Poincare.
On demontre une version generale du theoreme de van Kampen exprimant le groupoide de Poincare d'un espace topologique comme un coegalisateur de diagrammes de groupoides. Dans de nombreuses situations geometriques, on en deduit une presentation explicite du groupe de Poincare.