Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is a comprehensive, systematic survey of the synthesis problem, and of region theory which underlies its solution, covering the related theory, algorithms, and applications. The authors focus on safe Petri nets and place/transition nets (P/T-nets), treating synthesis as an automated process which, given behavioural specifications or partial specifications of a system to be realized, decides whether the specifications are feasible, and then produces a Petri net realizing them exactly, or if this is not possible produces a Petri net realizing an optimal approximation of the specifications.
In Part I the authors introduce elementary net synthesis. In Part II they explain variations of elementary net synthesis and the unified theory of net synthesis. The first three chapters of Part III address the linear algebraic structure of regions, synthesis of P/T-nets from finite initialized transition systems, and the synthesis of unbounded P/T-nets. Finally, the last chapter in Part III and the chapters in Part IV cover more advanced topics and applications: P/T-net with the step firing rule, extracting concurrency from transition systems, process discovery, supervisory control, and the design of speed-independent circuits.
Most chapters conclude with exercises, and the book is a valuable reference for both graduate students of computer science and electrical engineering and researchers and engineers in this domain.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is a comprehensive, systematic survey of the synthesis problem, and of region theory which underlies its solution, covering the related theory, algorithms, and applications. The authors focus on safe Petri nets and place/transition nets (P/T-nets), treating synthesis as an automated process which, given behavioural specifications or partial specifications of a system to be realized, decides whether the specifications are feasible, and then produces a Petri net realizing them exactly, or if this is not possible produces a Petri net realizing an optimal approximation of the specifications.
In Part I the authors introduce elementary net synthesis. In Part II they explain variations of elementary net synthesis and the unified theory of net synthesis. The first three chapters of Part III address the linear algebraic structure of regions, synthesis of P/T-nets from finite initialized transition systems, and the synthesis of unbounded P/T-nets. Finally, the last chapter in Part III and the chapters in Part IV cover more advanced topics and applications: P/T-net with the step firing rule, extracting concurrency from transition systems, process discovery, supervisory control, and the design of speed-independent circuits.
Most chapters conclude with exercises, and the book is a valuable reference for both graduate students of computer science and electrical engineering and researchers and engineers in this domain.