Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Intrinsic point defects due to high energy particle irradiation are studied in terms of anelastic principles and experimental techniques. A critical assessment of available data on binding and diffusion energies of self-interstitials and self-interstitial solute atom complexes is given. New results are presented for the elastic aftereffect of self-interstitials and caging motions, i.e., localized diffusion of metallic interstitial atoms. A novel point discussed is how the design of torsion pendulum and vibrating reed devices are affected by in situ irradiations with electrons. The dynamics of elastic dipoles are outlined and supplemented by the results of computer simulations.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Intrinsic point defects due to high energy particle irradiation are studied in terms of anelastic principles and experimental techniques. A critical assessment of available data on binding and diffusion energies of self-interstitials and self-interstitial solute atom complexes is given. New results are presented for the elastic aftereffect of self-interstitials and caging motions, i.e., localized diffusion of metallic interstitial atoms. A novel point discussed is how the design of torsion pendulum and vibrating reed devices are affected by in situ irradiations with electrons. The dynamics of elastic dipoles are outlined and supplemented by the results of computer simulations.