Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Methods of Quantization: Lectures Held at the 39. Universitatswochen fur Kern- und Teilchenphysik, Schladming, Austria
Paperback

Methods of Quantization: Lectures Held at the 39. Universitatswochen fur Kern- und Teilchenphysik, Schladming, Austria

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Thisvolumecontainsthewrittenversionsofinvitedlecturespresentedat the 39. InternationaleUniversitatswochenfur .. Kern-undTeilchenphysik in Schladming, Austria, which took place from February 26th to March 4th, 2000. The title of the school was Methods of Quantization . This is, of course,averybroad?eld,soonlysomeofthenewandinterestingdevel- mentscouldbecoveredwithinthescopeoftheschool. About75yearsagoSchrodingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe?eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The timeevolution ofthesystemisthenconsideredin + light-conetime x =t+z/c. Theappealingfeaturesof light-conequ- tization ,whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-odingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe? eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The timeevolution ofthesystemisthenconsideredin + light-conetime x =t+z/c. Theappealingfeaturesof light-conequ- tization ,whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-Kleinprogramforsupergravity(P. vanNieuwenhuizen),on dynamicalr-matricesandquantization(A. Alekseev),andonthequantum Liouvillemodelasaninstructiveexampleofquantumintegrablemodels(L. Faddeev). Inaddition,theschoolwascomplementedbymanyexcellents- inars. Thelistofseminarspeakersandthetopicsaddressedbythemcanbe foundattheendofthisvolume. Theinterestedreaderisrequestedtocontact thespeakersdirectlyfordetailedinformationorpertinentmaterial. Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir e?ortsandtothemainsponsorsoftheschool,theAustrianMinistryofE- cation,Science,andCultureandtheGovernmentofStyria,forprovidingg- eroussupport. Wealsoappreciatethevaluableorganizationalandtechnical assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugte- nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore, wethankoursecretaries,S. FuchsandE. Monschein,anumberofgra- atestudentsfromourinstitute,and,lastbutnotleast,ourcolleaguesfrom theorganizingcommitteefortheirassistanceinpreparingandrunningthe school. Graz, HeimoLatal March2001 WolfgangSchweiger Contents FormsofRelativisticDynamics BernardL. G. Bakker…1 1 Introduction…1 2 ThePoincar'eGroup…3 3 FormsofRelativisticDynamics…4 3. 1 ComparisonofInstantForm,FrontForm,andPointForm…6 4 Light-FrontDynamics…9 4. 1 RelativeMomentum,InvariantMass…9 4. 2 TheBoxDiagram…14 5 Poincar'eGeneratorsinFieldTheory…19 5. 1 FermionsInteractingwithaScalarField…20 5. 2 InstantForm…20 5. 3 FrontForm(LF)…21 5. 4 InteractingandNon-interactingGeneratorsonanInstant andontheLightFront…22 6 Light-FrontPerturbationTheory…23 6. 1 ConnectionofCovariantAmplitudes toLight-FrontAmplitudes…24 6. 2 Regularization…26 6. 3 MinusRegularization…26 7 TriangleDiagraminYukawaTheory…27 7. 1 CovariantCalculation …28 7. 2 ConstructionoftheCurrentinLFD…30 7. 3 NumericalResults…37 3 8 FourVariationsonaThemein? Theory…37 8. 1 CovariantCalculation…39 8. 2 Instant-FormCalculation…42 8. 3 CalculationinLight-FrontCoordinates…47 8. 4 Front-FormCalculation…49 9 DimensionalRegularization:BasicFormulae…51 10 Four-DimensionalIntegration…52 11 SomeUsefulIntegrals…53 References…53 VIII Contents Light-ConeQuantization:FoundationsandApplications ThomasHeinzl…

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
3 October 2013
Pages
228
ISBN
9783662143360

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Thisvolumecontainsthewrittenversionsofinvitedlecturespresentedat the 39. InternationaleUniversitatswochenfur .. Kern-undTeilchenphysik in Schladming, Austria, which took place from February 26th to March 4th, 2000. The title of the school was Methods of Quantization . This is, of course,averybroad?eld,soonlysomeofthenewandinterestingdevel- mentscouldbecoveredwithinthescopeoftheschool. About75yearsagoSchrodingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe?eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The timeevolution ofthesystemisthenconsideredin + light-conetime x =t+z/c. Theappealingfeaturesof light-conequ- tization ,whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-odingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe? eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The timeevolution ofthesystemisthenconsideredin + light-conetime x =t+z/c. Theappealingfeaturesof light-conequ- tization ,whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-Kleinprogramforsupergravity(P. vanNieuwenhuizen),on dynamicalr-matricesandquantization(A. Alekseev),andonthequantum Liouvillemodelasaninstructiveexampleofquantumintegrablemodels(L. Faddeev). Inaddition,theschoolwascomplementedbymanyexcellents- inars. Thelistofseminarspeakersandthetopicsaddressedbythemcanbe foundattheendofthisvolume. Theinterestedreaderisrequestedtocontact thespeakersdirectlyfordetailedinformationorpertinentmaterial. Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir e?ortsandtothemainsponsorsoftheschool,theAustrianMinistryofE- cation,Science,andCultureandtheGovernmentofStyria,forprovidingg- eroussupport. Wealsoappreciatethevaluableorganizationalandtechnical assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugte- nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore, wethankoursecretaries,S. FuchsandE. Monschein,anumberofgra- atestudentsfromourinstitute,and,lastbutnotleast,ourcolleaguesfrom theorganizingcommitteefortheirassistanceinpreparingandrunningthe school. Graz, HeimoLatal March2001 WolfgangSchweiger Contents FormsofRelativisticDynamics BernardL. G. Bakker…1 1 Introduction…1 2 ThePoincar'eGroup…3 3 FormsofRelativisticDynamics…4 3. 1 ComparisonofInstantForm,FrontForm,andPointForm…6 4 Light-FrontDynamics…9 4. 1 RelativeMomentum,InvariantMass…9 4. 2 TheBoxDiagram…14 5 Poincar'eGeneratorsinFieldTheory…19 5. 1 FermionsInteractingwithaScalarField…20 5. 2 InstantForm…20 5. 3 FrontForm(LF)…21 5. 4 InteractingandNon-interactingGeneratorsonanInstant andontheLightFront…22 6 Light-FrontPerturbationTheory…23 6. 1 ConnectionofCovariantAmplitudes toLight-FrontAmplitudes…24 6. 2 Regularization…26 6. 3 MinusRegularization…26 7 TriangleDiagraminYukawaTheory…27 7. 1 CovariantCalculation …28 7. 2 ConstructionoftheCurrentinLFD…30 7. 3 NumericalResults…37 3 8 FourVariationsonaThemein? Theory…37 8. 1 CovariantCalculation…39 8. 2 Instant-FormCalculation…42 8. 3 CalculationinLight-FrontCoordinates…47 8. 4 Front-FormCalculation…49 9 DimensionalRegularization:BasicFormulae…51 10 Four-DimensionalIntegration…52 11 SomeUsefulIntegrals…53 References…53 VIII Contents Light-ConeQuantization:FoundationsandApplications ThomasHeinzl…

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
3 October 2013
Pages
228
ISBN
9783662143360