Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Environmental Control for Plants Using Intelligent Control Systems
Paperback

Environmental Control for Plants Using Intelligent Control Systems

$263.99
Sign in or become a Readings Member to add this title to your wishlist.

Master’s Thesis from the year 2005 in the subject Engineering - Artificial Intelligence, grade: MSc, course: Intelligent Control, language: English, abstract: […] In practice, conventional controllers were used to control the system however their parameters are empirically adjusted. Besides, the operation of these controllers relies on the measurements provided by sensors located inside and near the greenhouse. If the information provided by one or several of these sensors is erroneous, the controllers will not operate properly. Similarly, failure of one or several of the actuators to function properly will impair the greenhouse operation. Therefore, an automatic diagnosis system of failures in greenhouses is proposed. The diagnosis system is based on deviations observed between measurements performed in the system and the predictions of a model of the failure-free system. This comparison is done through a bank of fuzzy observers, where each observer becomes active to a specific failure signature and inactive to the other failures. Neural networks are used to develop a model for the failure-free greenhouse. The main objective of this thesis is to explore and develop intelligent control schemes for adjusting the climate inside a greenhouse. The thesis employs the conventional Pseudo- Derivative Feedback (PDF) Controller. It develops the fuzzy PDF controller (FPDF). The thesis also, develops two genetic algorithm (GA) based climatic control schemes, one is genetic PDF (GPDF) and the other is genetic FPDF (GFPDF). The former uses GA to adjust the gains of the Pseudo-Derivative Feedback Controller (GPDF) and the later uses genetic algorithm to optimize the FPDF controller parameters (i.e., scale factors and/or parameters of the membership functions). Finally, the thesis develops a fuzzy neural fault detection and isolation system (FNFDIS), in which a bank of fuzzy observers are designed to detect faults that m

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Grin Verlag
Country
Germany
Date
19 March 2012
Pages
154
ISBN
9783656152453

Master’s Thesis from the year 2005 in the subject Engineering - Artificial Intelligence, grade: MSc, course: Intelligent Control, language: English, abstract: […] In practice, conventional controllers were used to control the system however their parameters are empirically adjusted. Besides, the operation of these controllers relies on the measurements provided by sensors located inside and near the greenhouse. If the information provided by one or several of these sensors is erroneous, the controllers will not operate properly. Similarly, failure of one or several of the actuators to function properly will impair the greenhouse operation. Therefore, an automatic diagnosis system of failures in greenhouses is proposed. The diagnosis system is based on deviations observed between measurements performed in the system and the predictions of a model of the failure-free system. This comparison is done through a bank of fuzzy observers, where each observer becomes active to a specific failure signature and inactive to the other failures. Neural networks are used to develop a model for the failure-free greenhouse. The main objective of this thesis is to explore and develop intelligent control schemes for adjusting the climate inside a greenhouse. The thesis employs the conventional Pseudo- Derivative Feedback (PDF) Controller. It develops the fuzzy PDF controller (FPDF). The thesis also, develops two genetic algorithm (GA) based climatic control schemes, one is genetic PDF (GPDF) and the other is genetic FPDF (GFPDF). The former uses GA to adjust the gains of the Pseudo-Derivative Feedback Controller (GPDF) and the later uses genetic algorithm to optimize the FPDF controller parameters (i.e., scale factors and/or parameters of the membership functions). Finally, the thesis develops a fuzzy neural fault detection and isolation system (FNFDIS), in which a bank of fuzzy observers are designed to detect faults that m

Read More
Format
Paperback
Publisher
Grin Verlag
Country
Germany
Date
19 March 2012
Pages
154
ISBN
9783656152453