Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Spectroscopy of Molecular Excitons
Paperback

Spectroscopy of Molecular Excitons

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Low-temperature spectroscopy of organic molecular crystals came into being in the late 20s, just when quantum physics of solids as a whole began to de velop vigorously. Already in the early works, two experimental facts of prime importance were discovered: the presence of a multitude of narrow bands in the low-temperature spectrum of a crystal, and a close relationship between the spectrum of the crystal and that of the constituent molecules. These findings immediately preceded the celebrated paper of Frenkel in which he went beyond the framework of Bloch’s scheme and advanced the exciton concept. Subsequent investigations showed that the most interesting features of the spectra of molecular crystals are associated with excitons, and then the spectroscopy of molecular excitons began to form gradually on the basis of the spectroscopy of organic crystals. The molecular exciton became synonymous to the Frenkel exciton in a molecular crystal. In view of the difficulties involved in the analysis of rich spectra con taining many tens of bands, the spectroscopy of molecular crystals had long been connected most closely with the spectroscopy of molecules. It had deve loped independently, to a large extent, from the other branches of solid state physics. This was also emphasized by the difference in experimental techniques, the specific properties of the objects, etc. As a result, there was some lag in ideas and concepts.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
9 April 2012
Pages
274
ISBN
9783642882227

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Low-temperature spectroscopy of organic molecular crystals came into being in the late 20s, just when quantum physics of solids as a whole began to de velop vigorously. Already in the early works, two experimental facts of prime importance were discovered: the presence of a multitude of narrow bands in the low-temperature spectrum of a crystal, and a close relationship between the spectrum of the crystal and that of the constituent molecules. These findings immediately preceded the celebrated paper of Frenkel in which he went beyond the framework of Bloch’s scheme and advanced the exciton concept. Subsequent investigations showed that the most interesting features of the spectra of molecular crystals are associated with excitons, and then the spectroscopy of molecular excitons began to form gradually on the basis of the spectroscopy of organic crystals. The molecular exciton became synonymous to the Frenkel exciton in a molecular crystal. In view of the difficulties involved in the analysis of rich spectra con taining many tens of bands, the spectroscopy of molecular crystals had long been connected most closely with the spectroscopy of molecules. It had deve loped independently, to a large extent, from the other branches of solid state physics. This was also emphasized by the difference in experimental techniques, the specific properties of the objects, etc. As a result, there was some lag in ideas and concepts.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
9 April 2012
Pages
274
ISBN
9783642882227