Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The monograph is devoted to phenomena of nonlinear optics appearing on a macro scopic level in the interaction of intense light with an isolated atom. It is a first attempt to summarize the elementary phenomena of nonlinear optics and present the various methods used in experiment and theory. In essence, this book can be considered an expanded version of the new aspect of quantum mechanics and atomic physics that in time will be incorporated into te- books on this subject. By the middle of this century the interaction of light with atoms had become one of the most investigated branches of physics. However, in the mid-sixties the development of high-power lasers changed this situation completely. It is a well-known fact that lasers are essentially new sources of light with high intensity, sharp directivity, and practically ideal monochromaticity. Entirely new phenomena came up in the studies of the interaction of light with atoms. In an intense light field, multiphoton transitions become important. The field disturbs the atomic levels, shifting, broadening, and mixing them. In an extremely strong field the atom ceases to be a bound system. These and similar phenomena on the atomic (microscopic) level determine the variations in the averaged, macroscopic properties of the medium, variations that cause nonlinear-optics phenomena, which radically change the fundamental classical laws of the interaction of light with matter.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The monograph is devoted to phenomena of nonlinear optics appearing on a macro scopic level in the interaction of intense light with an isolated atom. It is a first attempt to summarize the elementary phenomena of nonlinear optics and present the various methods used in experiment and theory. In essence, this book can be considered an expanded version of the new aspect of quantum mechanics and atomic physics that in time will be incorporated into te- books on this subject. By the middle of this century the interaction of light with atoms had become one of the most investigated branches of physics. However, in the mid-sixties the development of high-power lasers changed this situation completely. It is a well-known fact that lasers are essentially new sources of light with high intensity, sharp directivity, and practically ideal monochromaticity. Entirely new phenomena came up in the studies of the interaction of light with atoms. In an intense light field, multiphoton transitions become important. The field disturbs the atomic levels, shifting, broadening, and mixing them. In an extremely strong field the atom ceases to be a bound system. These and similar phenomena on the atomic (microscopic) level determine the variations in the averaged, macroscopic properties of the medium, variations that cause nonlinear-optics phenomena, which radically change the fundamental classical laws of the interaction of light with matter.