Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The building of conceptual models is an inherent part of our interaction with the world, and the foundation of scientific investigation. Scientists often perform the processes of modelling subconsciously, unaware of the scope and significance of this activity, and the techniques available to assist in the description and testing of their ideas. Mathematics has three important contributions to make in biological modelling: (1) it provides unambiguous languages for expressing relationships at both qualitative and quantitative levels of observation; (2) it allows effective analysis and prediction of model behaviour, and can thereby organize experimental effort productively; (3) it offers rigorous methods of testing hypotheses by comparing models with experimental data; by providing a means of objectively excluding unsuitable concepts, the development of ideas is given a sound experimental basis. Many modern mathematical techniques can be exploited only with the aid of computers. These machines not only provide increased speed and accuracy in determining the consequences of model assumptions, but also greatly extend the range of problems which can be explored. The impact of computers in the biological sciences has been widespread and revolutionary, and will continue to be so.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The building of conceptual models is an inherent part of our interaction with the world, and the foundation of scientific investigation. Scientists often perform the processes of modelling subconsciously, unaware of the scope and significance of this activity, and the techniques available to assist in the description and testing of their ideas. Mathematics has three important contributions to make in biological modelling: (1) it provides unambiguous languages for expressing relationships at both qualitative and quantitative levels of observation; (2) it allows effective analysis and prediction of model behaviour, and can thereby organize experimental effort productively; (3) it offers rigorous methods of testing hypotheses by comparing models with experimental data; by providing a means of objectively excluding unsuitable concepts, the development of ideas is given a sound experimental basis. Many modern mathematical techniques can be exploited only with the aid of computers. These machines not only provide increased speed and accuracy in determining the consequences of model assumptions, but also greatly extend the range of problems which can be explored. The impact of computers in the biological sciences has been widespread and revolutionary, and will continue to be so.