Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the universal photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the universal photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the universal photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the universal photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.