Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In the past 5 years there has been an enormous increase of evidence that the ion channels activated by mechanical force are common to a wide variety of cell types. Mechanosensitive (MS) ion channels form a small proportion of the total channel population. They are now found in more than 30 cell types from E. coli, yeast, to plant, invertebrate, and vertebrate cells, where they occur in virtually all types of cells from bone to smooth muscle, as well as neurons. The majority of MS channels are permeable to monovalent cations and are slightly selective for K+ over Na +. How 2 ever, there are several reports of anion-selective MS channels, MS Ca + channels, and MS channels with large conductances that do not dis criminate markedly between cations and anions. Recently B. Hille has postulated possible evolutionary relationships between several types of ion channels, with mechanosensitive channels predating even the eukaryotes. Two voltage-gated channel types originate with the stem eukaryotes, as deduced from the presence of voltage-gated K+ 2 and Ca + channels in protozoa, algae, or higher plants. Agonist-gated chan nels as well as voltage-gated Na + channels appear with the earliest metazoan animals, as deduced from the presence of Na + spikes and fast chemical synapses in cnidaria (coelenterates), ctenophores, and all higher animals.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In the past 5 years there has been an enormous increase of evidence that the ion channels activated by mechanical force are common to a wide variety of cell types. Mechanosensitive (MS) ion channels form a small proportion of the total channel population. They are now found in more than 30 cell types from E. coli, yeast, to plant, invertebrate, and vertebrate cells, where they occur in virtually all types of cells from bone to smooth muscle, as well as neurons. The majority of MS channels are permeable to monovalent cations and are slightly selective for K+ over Na +. How 2 ever, there are several reports of anion-selective MS channels, MS Ca + channels, and MS channels with large conductances that do not dis criminate markedly between cations and anions. Recently B. Hille has postulated possible evolutionary relationships between several types of ion channels, with mechanosensitive channels predating even the eukaryotes. Two voltage-gated channel types originate with the stem eukaryotes, as deduced from the presence of voltage-gated K+ 2 and Ca + channels in protozoa, algae, or higher plants. Agonist-gated chan nels as well as voltage-gated Na + channels appear with the earliest metazoan animals, as deduced from the presence of Na + spikes and fast chemical synapses in cnidaria (coelenterates), ctenophores, and all higher animals.