Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Research on cytoskeletal elements of eukaryotic cells has been expand ing explosively during the past 5 to 10 years. Due largely to the employment of electron and immunofluorescent microscopy, significant results have been obtained which have provided interesting new insights into the dynamics of nucleated cells at the structural, physiological, as well as developmental levels. While a substantial amount of knowledge has accumulated on the function of microfilaments and microtubules, the roles of the third major class of cytoskeletal structures in vertebrate cells, the intermediate filaments, have largely resisted clarification. The investigation of cultured cells and of tissues from various developmental stages has furnished a host of information on the inter-and intracellular distribution of the different types of intermediate filaments and led to the contention that they have a structural and organizing function in the cytoplasm of vertebrate cells. However, the results of recent experimen that vertebrate cells can function perfectly in the tation have shown complete absence of cytoplasmically extended intermediate filament meshworks. It is legitimate to suppose, therefore, that their function in vertebrate cells is much more subtle and complex than generally presumed. Our interest in the structure and function of intermediate filament proteins was initiated approximately 7 years ago while working on the regulation of macromolecular synthesis in picornavirus-infected mam malian cells. In attempts to demonstrate virus-induced changes in the nuclear protein components of the host cells, the nonionic detergent extraction method was used to purify nuclei.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Research on cytoskeletal elements of eukaryotic cells has been expand ing explosively during the past 5 to 10 years. Due largely to the employment of electron and immunofluorescent microscopy, significant results have been obtained which have provided interesting new insights into the dynamics of nucleated cells at the structural, physiological, as well as developmental levels. While a substantial amount of knowledge has accumulated on the function of microfilaments and microtubules, the roles of the third major class of cytoskeletal structures in vertebrate cells, the intermediate filaments, have largely resisted clarification. The investigation of cultured cells and of tissues from various developmental stages has furnished a host of information on the inter-and intracellular distribution of the different types of intermediate filaments and led to the contention that they have a structural and organizing function in the cytoplasm of vertebrate cells. However, the results of recent experimen that vertebrate cells can function perfectly in the tation have shown complete absence of cytoplasmically extended intermediate filament meshworks. It is legitimate to suppose, therefore, that their function in vertebrate cells is much more subtle and complex than generally presumed. Our interest in the structure and function of intermediate filament proteins was initiated approximately 7 years ago while working on the regulation of macromolecular synthesis in picornavirus-infected mam malian cells. In attempts to demonstrate virus-induced changes in the nuclear protein components of the host cells, the nonionic detergent extraction method was used to purify nuclei.