Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
W.J.Quirk 1.1 Real-time software and the real world Real-time software and the real world are inseparably related. Real time cannot be turned back and the real world will not always forget its history. The consequences of previous influences may last for a long time and the undesired effects may range from being inconvenient to disastrous in both economic and human terms. As a result, there is much pressure to develop and apply techniques to improve the reliability of real-time software so that the frequency and consequences of failure are reduced to a level that is as low as reasonably achievable. This report is about such techniques. After a detailed description of the software life cycle, a chapter is devoted to each of the four principle categories of technique available at present. These cover all stages of the software development process and each chapter identifies relevant techniques, the stages to which they are applicable and their effectiveness in improving real-time software reliability. 1.2 The characteristics of real-time software As well as the enhanced reliability requirement discussed above, real-time software has a number of other distinguishing characteristics. First, the sequencing and timing of inputs are determined by the real world and not by the programmer. Thus the program needs to be prepared for the unexpected and the demands made on the system may be conflicting. Second, the demands on the system may occur in parallel rather than in sequence.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
W.J.Quirk 1.1 Real-time software and the real world Real-time software and the real world are inseparably related. Real time cannot be turned back and the real world will not always forget its history. The consequences of previous influences may last for a long time and the undesired effects may range from being inconvenient to disastrous in both economic and human terms. As a result, there is much pressure to develop and apply techniques to improve the reliability of real-time software so that the frequency and consequences of failure are reduced to a level that is as low as reasonably achievable. This report is about such techniques. After a detailed description of the software life cycle, a chapter is devoted to each of the four principle categories of technique available at present. These cover all stages of the software development process and each chapter identifies relevant techniques, the stages to which they are applicable and their effectiveness in improving real-time software reliability. 1.2 The characteristics of real-time software As well as the enhanced reliability requirement discussed above, real-time software has a number of other distinguishing characteristics. First, the sequencing and timing of inputs are determined by the real world and not by the programmer. Thus the program needs to be prepared for the unexpected and the demands made on the system may be conflicting. Second, the demands on the system may occur in parallel rather than in sequence.