Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics
Paperback

Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics

$407.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The enormous progress over the last decades in our understanding of the mechanisms behind the complex system Earth is to a large extent based on the availability of enlarged data sets and sophisticated methods for their analysis. Univariate as well as multivariate time series are a particular class of such data which are of special importance for studying the dynamical p- cesses in complex systems. Time series analysis theory and applications in geo- and astrophysics have always been mutually stimulating, starting with classical (linear) problems like the proper estimation of power spectra, which hasbeenputforwardbyUdnyYule(studyingthefeaturesofsunspotactivity) and, later, by John Tukey. In the second half of the 20th century, more and more evidence has been accumulated that most processes in nature are intrinsically non-linear and thus cannot be su?ciently studied by linear statistical methods. With mat- matical developments in the ?elds of dynamic system’s theory, exempli?ed by Edward Lorenz’s pioneering work, and fractal theory, starting with the early fractal concepts inferred by Harold Edwin Hurst from the analysis of geoph- ical time series,nonlinear methods became available for time seriesanalysis as well. Over the last decades, these methods have attracted an increasing int- est in various branches of the earth sciences. The world’s leading associations of geoscientists, the American Geophysical Union (AGU) and the European Geosciences Union (EGU) have reacted to these trends with the formation of special nonlinear focus groups and topical sections, which are actively present at the corresponding annual assemblies.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
25 November 2010
Pages
390
ISBN
9783642097690

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The enormous progress over the last decades in our understanding of the mechanisms behind the complex system Earth is to a large extent based on the availability of enlarged data sets and sophisticated methods for their analysis. Univariate as well as multivariate time series are a particular class of such data which are of special importance for studying the dynamical p- cesses in complex systems. Time series analysis theory and applications in geo- and astrophysics have always been mutually stimulating, starting with classical (linear) problems like the proper estimation of power spectra, which hasbeenputforwardbyUdnyYule(studyingthefeaturesofsunspotactivity) and, later, by John Tukey. In the second half of the 20th century, more and more evidence has been accumulated that most processes in nature are intrinsically non-linear and thus cannot be su?ciently studied by linear statistical methods. With mat- matical developments in the ?elds of dynamic system’s theory, exempli?ed by Edward Lorenz’s pioneering work, and fractal theory, starting with the early fractal concepts inferred by Harold Edwin Hurst from the analysis of geoph- ical time series,nonlinear methods became available for time seriesanalysis as well. Over the last decades, these methods have attracted an increasing int- est in various branches of the earth sciences. The world’s leading associations of geoscientists, the American Geophysical Union (AGU) and the European Geosciences Union (EGU) have reacted to these trends with the formation of special nonlinear focus groups and topical sections, which are actively present at the corresponding annual assemblies.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
25 November 2010
Pages
390
ISBN
9783642097690