Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Zipf’s law is one of the few quantitative reproducible regularities found in e- nomics. It states that, for most countries, the size distributions of cities and of rms (with additional examples found in many other scienti c elds) are power laws with a speci c exponent: the number of cities and rms with a size greater thanS is inversely proportional toS. Most explanations start with Gibrat’s law of proportional growth but need to incorporate additional constraints and ingredients introducing deviations from it. Here, we present a general theoretical derivation of Zipf’s law, providing a synthesis and extension of previous approaches. First, we show that combining Gibrat’s law at all rm levels with random processes of rm’s births and deaths yield Zipf’s law under a balance condition between a rm’s growth and death rate. We nd that Gibrat’s law of proportionate growth does not need to be strictly satis ed. As long as the volatility of rms’ sizes increase asy- totically proportionally to the size of the rm and that the instantaneous growth rate increases not faster than the volatility, the distribution of rm sizes follows Zipf’s law. This suggests that the occurrence of very large rms in the distri- tion of rm sizes described by Zipf’s law is more a consequence of random growth than systematic returns: in particular, for large rms, volatility must dominate over the instantaneous growth rate.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Zipf’s law is one of the few quantitative reproducible regularities found in e- nomics. It states that, for most countries, the size distributions of cities and of rms (with additional examples found in many other scienti c elds) are power laws with a speci c exponent: the number of cities and rms with a size greater thanS is inversely proportional toS. Most explanations start with Gibrat’s law of proportional growth but need to incorporate additional constraints and ingredients introducing deviations from it. Here, we present a general theoretical derivation of Zipf’s law, providing a synthesis and extension of previous approaches. First, we show that combining Gibrat’s law at all rm levels with random processes of rm’s births and deaths yield Zipf’s law under a balance condition between a rm’s growth and death rate. We nd that Gibrat’s law of proportionate growth does not need to be strictly satis ed. As long as the volatility of rms’ sizes increase asy- totically proportionally to the size of the rm and that the instantaneous growth rate increases not faster than the volatility, the distribution of rm sizes follows Zipf’s law. This suggests that the occurrence of very large rms in the distri- tion of rm sizes described by Zipf’s law is more a consequence of random growth than systematic returns: in particular, for large rms, volatility must dominate over the instantaneous growth rate.