Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications

Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications
Format
Hardback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Published
25 May 2009
Pages
360
ISBN
9783642012617

Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Throughout the evolutionary history of this planet, biological systems have been able to adapt, survive and ?ourish despite the turmoils and upheavals of the environment. This ability has long fascinated and inspired people to emulate and adapt natural processes for application in the arti?cial world of human endeavours. The realm of optimisation problems is no exception. In fact, in recent years biological systems have been the inspiration of the majority of meta-heuristic search algorithms including, but not limited to, genetic algorithms,particle swarmoptimisation, ant colony optimisation and extremal optimisation. This book presentsa continuum ofbiologicallyinspired optimisation,from the theoretical to the practical. We begin with an overview of the ?eld of biologically-inspired optimisation, progress to presentation of theoretical analysesandrecentextensionstoavarietyofmeta-heuristicsand?nallyshow application to a number of real-worldproblems. As such, it is anticipated the book will provide a useful resource for reseachers and practitioners involved in any aspect of optimisation problems. The overviewof the ?eld is provided by two works co-authored by seminal thinkers in the ? eld. Deb’s Evolution’s Niche in Multi-Criterion Problem Solving , presents a very comprehensive and complete overview of almost all major issues in Evolutionary Multi-objective Optimisation (EMO). This chapter starts with the original motivation for developing EMO algorithms and provides an account of some successful problem domains on which EMO has demonstrated a clear edge over their classical counterparts.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.