Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Number Theory, grade: Postgraduate, University of Sheffield, language: English, abstract: This is the first in a two part series of papers establishing (with proof) the main theorems of global class field theory. We first recap some of the main ideas of algebraic number theory, using these to develop the Artin reciprocity law and the Takagi existence theorem both in terms of ideals and ideles. Finally, we use the Hilbert class field in order to study the well known problem of which prime numbers can be represented in the form x^2 + ny^2 for integers x, y and positive integer n
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Research Paper (postgraduate) from the year 2011 in the subject Mathematics - Number Theory, grade: Postgraduate, University of Sheffield, language: English, abstract: This is the first in a two part series of papers establishing (with proof) the main theorems of global class field theory. We first recap some of the main ideas of algebraic number theory, using these to develop the Artin reciprocity law and the Takagi existence theorem both in terms of ideals and ideles. Finally, we use the Hilbert class field in order to study the well known problem of which prime numbers can be represented in the form x^2 + ny^2 for integers x, y and positive integer n