Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Friction Stir Welding of Aluminum Alloys
Paperback

Friction Stir Welding of Aluminum Alloys

$135.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The main objective of this book is a novel integrated multiphysics modeling, testing, and optimization of friction stir welding (FSW) for aluminum alloys, and thereby facilitating a better understating of processing-microstructure-properties relationships in this relatively new welding technique. To this end, first we review various models and optimization methods used in the field of FSW. Next, based on a validated thermal model for aluminum 6061 we explain determining parameters in the resulting mechanical properties of FSW welds. Then, we develop and validate a novel two-dimensional Eulerian steady-state integrated multiphysics model of FSW of aluminum 6061 which did not exist earlier in the literature and can simultaneously predict temperature, shear strain rate, shear stress and strain fields over the entire workpiece. The model can additionally predict the microstructural changes during and after FSW as well as the residual stresses. Finally, we perform a comprehensive experimental study on FSW of aluminum 6061 samples in order to further validate the developed numerical model and optimize the welding process parameters.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Scholars' Press
Country
United States
Date
26 February 2014
Pages
232
ISBN
9783639707731

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The main objective of this book is a novel integrated multiphysics modeling, testing, and optimization of friction stir welding (FSW) for aluminum alloys, and thereby facilitating a better understating of processing-microstructure-properties relationships in this relatively new welding technique. To this end, first we review various models and optimization methods used in the field of FSW. Next, based on a validated thermal model for aluminum 6061 we explain determining parameters in the resulting mechanical properties of FSW welds. Then, we develop and validate a novel two-dimensional Eulerian steady-state integrated multiphysics model of FSW of aluminum 6061 which did not exist earlier in the literature and can simultaneously predict temperature, shear strain rate, shear stress and strain fields over the entire workpiece. The model can additionally predict the microstructural changes during and after FSW as well as the residual stresses. Finally, we perform a comprehensive experimental study on FSW of aluminum 6061 samples in order to further validate the developed numerical model and optimize the welding process parameters.

Read More
Format
Paperback
Publisher
Scholars' Press
Country
United States
Date
26 February 2014
Pages
232
ISBN
9783639707731