Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Laplace Transform Analytic Element Method
Paperback

Laplace Transform Analytic Element Method

$178.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The Laplace transform analytic element method (LT-AEM), applies the traditionally steady-state analytic element method (AEM) to the Laplace-transformed diffusion equation (Furman and Neuman, 2003). This strategy preserves the accuracy and elegance of the AEM while extending the method to transient phenomena. The approach taken here utilizes eigenfunction expansion to derive analytic solutions to the modified Helmholtz equation, then back-transforms the LT-AEM results with a numerical inverse Laplace transform algorithm. The two-dimensional elements derived here include the point, circle, line segment, ellipse, and infinite line, corresponding to polar, elliptical and Cartesian coordinates. Each element is derived for the simplest useful case, an impulse response due to a confined, transient, single-aquifer source. The extension of these elements to include effects due to leaky, unconfined, multi-aquifer, wellbore storage, and inertia is shown for a few simple elements (point and line), with ready extension to other elements. General temporal behavior is achieved using convolution between these impulse and general time functions; convolution allows the spatial and temporal components of an element to be handled independently.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
VDM Verlag Dr. Mueller E.K.
Country
Germany
Date
21 August 2008
Pages
172
ISBN
9783639074314

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The Laplace transform analytic element method (LT-AEM), applies the traditionally steady-state analytic element method (AEM) to the Laplace-transformed diffusion equation (Furman and Neuman, 2003). This strategy preserves the accuracy and elegance of the AEM while extending the method to transient phenomena. The approach taken here utilizes eigenfunction expansion to derive analytic solutions to the modified Helmholtz equation, then back-transforms the LT-AEM results with a numerical inverse Laplace transform algorithm. The two-dimensional elements derived here include the point, circle, line segment, ellipse, and infinite line, corresponding to polar, elliptical and Cartesian coordinates. Each element is derived for the simplest useful case, an impulse response due to a confined, transient, single-aquifer source. The extension of these elements to include effects due to leaky, unconfined, multi-aquifer, wellbore storage, and inertia is shown for a few simple elements (point and line), with ready extension to other elements. General temporal behavior is achieved using convolution between these impulse and general time functions; convolution allows the spatial and temporal components of an element to be handled independently.

Read More
Format
Paperback
Publisher
VDM Verlag Dr. Mueller E.K.
Country
Germany
Date
21 August 2008
Pages
172
ISBN
9783639074314