Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Based on the multiresolution method, which combines the continuum mechanics, kinetic Monte Carlo method and molecular dynamics method, this book studies the nanostructured materials grown by quantum-dot self- assembly, mechanical properties of strained semiconductors, and mechanical properties of carbon nanotube reinforced composites. This book covers the following three main contributions: 1). Self- organization of semiconductors Inc/Gac in Stranski- Krastanov growth mode is studied using kinetic Monte Carlo simulations method coupled with the Green’s function solution for the elastic strain energy distribution; 2) Utilizing the basic continuum mechanics, we present a molecular dynamic prediction for the elastic stiffness C11, C12 and C44 in strained silicon and Inc as functions of the volumetric (misfit) strain; 3). Also using MD method, the carbon nanotube reinforced Epon 862 composite is studied. The stress-strain relations and the elastic Young’s moduli along the longitudinal direction (parallel to CNT) are simulated with the results being also compared with those from the rule-of-mixture.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Based on the multiresolution method, which combines the continuum mechanics, kinetic Monte Carlo method and molecular dynamics method, this book studies the nanostructured materials grown by quantum-dot self- assembly, mechanical properties of strained semiconductors, and mechanical properties of carbon nanotube reinforced composites. This book covers the following three main contributions: 1). Self- organization of semiconductors Inc/Gac in Stranski- Krastanov growth mode is studied using kinetic Monte Carlo simulations method coupled with the Green’s function solution for the elastic strain energy distribution; 2) Utilizing the basic continuum mechanics, we present a molecular dynamic prediction for the elastic stiffness C11, C12 and C44 in strained silicon and Inc as functions of the volumetric (misfit) strain; 3). Also using MD method, the carbon nanotube reinforced Epon 862 composite is studied. The stress-strain relations and the elastic Young’s moduli along the longitudinal direction (parallel to CNT) are simulated with the results being also compared with those from the rule-of-mixture.