Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Automated recommender systems make product suggestions that are tailored to the individual needs of the user and represent powerful means to combat information glut. However, their practical applica-bility has been largely confined to scenarios where information rele-vant for recommendation making is kept in one single, authoritative node. Recently, novel distributed infrastructures are emerging, e.g., peer-to-peer networks and the Semantic Web, which could likewise benefit from recommender system services, leading to a paradigm shift towards decentralized recommender systems. In this book, we investigate the challenges that decentralized recommenders bring up and propose techniques to cope with those issues. The spectrum ranges from the use of product classification taxonomies, alleviating the sparsity problem, to trust propagation mechanisms designed to address the scalability issue. Empirical investigations on the corre-lation of interpersonal trust and interest similarity provide the com-ponent glue that melds these results. The book is geared towards academic readers and practitioners alike, with a focus on both implementable algorithms as well as new socio-psychological insights.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Automated recommender systems make product suggestions that are tailored to the individual needs of the user and represent powerful means to combat information glut. However, their practical applica-bility has been largely confined to scenarios where information rele-vant for recommendation making is kept in one single, authoritative node. Recently, novel distributed infrastructures are emerging, e.g., peer-to-peer networks and the Semantic Web, which could likewise benefit from recommender system services, leading to a paradigm shift towards decentralized recommender systems. In this book, we investigate the challenges that decentralized recommenders bring up and propose techniques to cope with those issues. The spectrum ranges from the use of product classification taxonomies, alleviating the sparsity problem, to trust propagation mechanisms designed to address the scalability issue. Empirical investigations on the corre-lation of interpersonal trust and interest similarity provide the com-ponent glue that melds these results. The book is geared towards academic readers and practitioners alike, with a focus on both implementable algorithms as well as new socio-psychological insights.