Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Security protocols are widely used to ensure secure communications over insecure networks, such as the internet or airwaves. These protocols use strong cryptography to prevent intruders from reading or modifying the messages. However, using cryptography is not enough to ensure their correctness. Combined with their typical small size, which suggests that one could easily assess their correctness, this often results in incorrectly designed protocols.
The authors present a methodology for formally describing security protocols and their environment. This methodology includes a model for describing protocols, their execution model, and the intruder model. The models are extended with a number of well-defined security properties, which capture the notions of correct protocols, and secrecy of data. The methodology can be used to prove that protocols satisfy these properties. Based on the model they have developed a tool set called Scyther that can automatically find attacks on security protocols or prove their correctness. In case studies they show the application of the methodology as well as the effectiveness of the analysis tool.
The methodology’s strong mathematical basis, the strong separation of concerns in the model, and the accompanying tool set make it ideally suited both for researchers and graduate students of information security or formal methods and for advanced professionals designing critical security protocols.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Security protocols are widely used to ensure secure communications over insecure networks, such as the internet or airwaves. These protocols use strong cryptography to prevent intruders from reading or modifying the messages. However, using cryptography is not enough to ensure their correctness. Combined with their typical small size, which suggests that one could easily assess their correctness, this often results in incorrectly designed protocols.
The authors present a methodology for formally describing security protocols and their environment. This methodology includes a model for describing protocols, their execution model, and the intruder model. The models are extended with a number of well-defined security properties, which capture the notions of correct protocols, and secrecy of data. The methodology can be used to prove that protocols satisfy these properties. Based on the model they have developed a tool set called Scyther that can automatically find attacks on security protocols or prove their correctness. In case studies they show the application of the methodology as well as the effectiveness of the analysis tool.
The methodology’s strong mathematical basis, the strong separation of concerns in the model, and the accompanying tool set make it ideally suited both for researchers and graduate students of information security or formal methods and for advanced professionals designing critical security protocols.