Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Addressing the difficult problem of controlling flexible spacecraft having multiple articulated appendages is the aim of this volume. Such systems are needed for space mission concepts including multi-payload space platforms and autonomous space-based manipulators. These systems are characterised by highly nonlinear dynamics, flexibility in members and joints, low inherent damping, and modeling uncertainty. A complete nonlinear rotational dynamic model of a generic multibody flexible system is derived, and is shown to possess certain passivity properties. The main result is a class of passivity-based nonlinear and linear output feedback control laws that enable globally stable closed-loop manoeuvres. The control laws are robust to parametric uncertainties, unmodeled uncertainties, and in some cases, actuator and sensor nonlinearities. All results given are also applicable to flexible terrestrial manipulators.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Addressing the difficult problem of controlling flexible spacecraft having multiple articulated appendages is the aim of this volume. Such systems are needed for space mission concepts including multi-payload space platforms and autonomous space-based manipulators. These systems are characterised by highly nonlinear dynamics, flexibility in members and joints, low inherent damping, and modeling uncertainty. A complete nonlinear rotational dynamic model of a generic multibody flexible system is derived, and is shown to possess certain passivity properties. The main result is a class of passivity-based nonlinear and linear output feedback control laws that enable globally stable closed-loop manoeuvres. The control laws are robust to parametric uncertainties, unmodeled uncertainties, and in some cases, actuator and sensor nonlinearities. All results given are also applicable to flexible terrestrial manipulators.