Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Introduction Generalremarks Thisreportisthecompilationofexperimentalandtheoreticaldataonatomicmasses,nuclear bindingenergies,nucleonseparationenergies,Q-valuesofsomenuclearreactionsandpar- etersof nucleonresidualinteractionsderivedfromdifferencesof nuclearbindingenergies.It consistsoftwoparts,volumesI/22AandI/22B,inwhichdatafornucleiwithatomicnumbers Z = 1?54andZ ? 55arepresented.EarlierQ-valuesofnuclearreactionswereconsideredin volume1/5AoftheNewSeriesLandoldt-Bornsteinlibrary[73Sc0A].Thedatainourcompi- tionarepresentedintableswhoseformatisanalogoustothatofothercompilationsofatomic masses (AM), nuclear binding energies (E ), atomic mass excesses of nuclei (ME,ME = 0 B 12 for Cbyde?nition),Q-valuesandseparationenergiesofasinglenucleonorapairofnuc- ons(S ,S ,S ,S )[05Au0A,05Wa35,03Au03,03AuZZ,03Wa32,02Wa27,01Au10,95Au04, n p 2n 2p 85Wa02,85Bo10,37Li0A]. AtomicmassesM areconnectedwithnuclearmassesM bytheformula: A N M (A,Z) =M (A,Z)+Z xm ?B (Z) (1) A N e el ?4 wherem = 510.99892(4)keV = 5.485799094(2)x10 uistheelectronrestmass(inatomic e massunitu)[06Ya08].ThetotalbindingenergyofallremovedelectronsB (Z)canbefound el in [76Hu0A] or approximated with the expression given by Lunney, Pearson and Thibault [03Lu10]: 2. 39 ?6 5.35 B (Z) = (14.4381xZ +1.55468x10 Z )eV (2) el The mass excess,M (A,Z) ?Au, and the nuclear binding energy E calculated by the A B formula: E =Z xM(p)+N xM(n)?M (A,Z) (3) B N areusuallygiveninunitkeV.HerevaluesM(p)andM(n)arethemassesofthenucleons.There isanassumptionthattheuncertaintyincalculatedvalueB (about150eVfortheatomswith el Z < 100 [03Lu10]) is smaller than the experimental error. If ionized atoms are involved in massmeasurementsthiscorrectionisappliedforthedeterminationoftheatomicmass. Themassexcessisrepresentedusuallysimultaneouslywiththetotalnuclearbindingenergy (E )orthebindingenergypernucleonE /A.Thelattervalueisconnectedwiththestabilityof B B nucleiandshowsamaximumaroundthe iron-peak importantinastrophysics[03Au03].As inothermasscompilationswegivenucleonandtwo-nucleonseparationenergies.Clustering effectsinnucleardataarepresentedbyseparationenergiesofdifferentnucleoncombinations (S ,S ,etc.).Forneutronseparationenergiesonlythemostprecisevaluesfromtherecent 2p2n 2p4n neutroncaptureexperimentsarepresented.Inseveralcasesonlynucleonseparationenergies areknownaccuratelywhiletotalbindingenergiesremainuncertain(insuchcasesweinclude newseparationenergy). The experimental study of atomic masses started nearly hundred years ago. In the p- neeringworkofAston[27As0A]nuclearbindingenergieswereobtainedformanynucleiand Landolt-Bornstein DOI:10.1007/978-3-540-69945-3_1 NewSeriesI/22A ©Springer2009 21 Introduction nearconstancyof theaveragebindingenergypernucleonsuggestedtheindependenceof the nucleardensitywiththeatomicweightAandthesaturationof thenuclearforces.Thesetwo nuclear features were represented by the ?rst mass formula byWeizsacker in 1935 [35Vo0A] inspired by the liquid-drop model (DM) of the nucleus by Nils Bohr. The Bethe-Weizsacker formula is extended recently in [08Me01, 08Ki01]. Some methodical aspects of earlier mass measurementswerediscussedbyWapstraandAudi[01Wa49,06Au0A].
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Introduction Generalremarks Thisreportisthecompilationofexperimentalandtheoreticaldataonatomicmasses,nuclear bindingenergies,nucleonseparationenergies,Q-valuesofsomenuclearreactionsandpar- etersof nucleonresidualinteractionsderivedfromdifferencesof nuclearbindingenergies.It consistsoftwoparts,volumesI/22AandI/22B,inwhichdatafornucleiwithatomicnumbers Z = 1?54andZ ? 55arepresented.EarlierQ-valuesofnuclearreactionswereconsideredin volume1/5AoftheNewSeriesLandoldt-Bornsteinlibrary[73Sc0A].Thedatainourcompi- tionarepresentedintableswhoseformatisanalogoustothatofothercompilationsofatomic masses (AM), nuclear binding energies (E ), atomic mass excesses of nuclei (ME,ME = 0 B 12 for Cbyde?nition),Q-valuesandseparationenergiesofasinglenucleonorapairofnuc- ons(S ,S ,S ,S )[05Au0A,05Wa35,03Au03,03AuZZ,03Wa32,02Wa27,01Au10,95Au04, n p 2n 2p 85Wa02,85Bo10,37Li0A]. AtomicmassesM areconnectedwithnuclearmassesM bytheformula: A N M (A,Z) =M (A,Z)+Z xm ?B (Z) (1) A N e el ?4 wherem = 510.99892(4)keV = 5.485799094(2)x10 uistheelectronrestmass(inatomic e massunitu)[06Ya08].ThetotalbindingenergyofallremovedelectronsB (Z)canbefound el in [76Hu0A] or approximated with the expression given by Lunney, Pearson and Thibault [03Lu10]: 2. 39 ?6 5.35 B (Z) = (14.4381xZ +1.55468x10 Z )eV (2) el The mass excess,M (A,Z) ?Au, and the nuclear binding energy E calculated by the A B formula: E =Z xM(p)+N xM(n)?M (A,Z) (3) B N areusuallygiveninunitkeV.HerevaluesM(p)andM(n)arethemassesofthenucleons.There isanassumptionthattheuncertaintyincalculatedvalueB (about150eVfortheatomswith el Z < 100 [03Lu10]) is smaller than the experimental error. If ionized atoms are involved in massmeasurementsthiscorrectionisappliedforthedeterminationoftheatomicmass. Themassexcessisrepresentedusuallysimultaneouslywiththetotalnuclearbindingenergy (E )orthebindingenergypernucleonE /A.Thelattervalueisconnectedwiththestabilityof B B nucleiandshowsamaximumaroundthe iron-peak importantinastrophysics[03Au03].As inothermasscompilationswegivenucleonandtwo-nucleonseparationenergies.Clustering effectsinnucleardataarepresentedbyseparationenergiesofdifferentnucleoncombinations (S ,S ,etc.).Forneutronseparationenergiesonlythemostprecisevaluesfromtherecent 2p2n 2p4n neutroncaptureexperimentsarepresented.Inseveralcasesonlynucleonseparationenergies areknownaccuratelywhiletotalbindingenergiesremainuncertain(insuchcasesweinclude newseparationenergy). The experimental study of atomic masses started nearly hundred years ago. In the p- neeringworkofAston[27As0A]nuclearbindingenergieswereobtainedformanynucleiand Landolt-Bornstein DOI:10.1007/978-3-540-69945-3_1 NewSeriesI/22A ©Springer2009 21 Introduction nearconstancyof theaveragebindingenergypernucleonsuggestedtheindependenceof the nucleardensitywiththeatomicweightAandthesaturationof thenuclearforces.Thesetwo nuclear features were represented by the ?rst mass formula byWeizsacker in 1935 [35Vo0A] inspired by the liquid-drop model (DM) of the nucleus by Nils Bohr. The Bethe-Weizsacker formula is extended recently in [08Me01, 08Ki01]. Some methodical aspects of earlier mass measurementswerediscussedbyWapstraandAudi[01Wa49,06Au0A].