Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Hardback

Grafting/Characterization Techniques/Kinetic Modeling

$359.99
Sign in or become a Readings Member to add this title to your wishlist.

Most of the untreated surfaces of polymers used in industry are not hydrophilic but hydrophobic. It is, therefore, difficult to bond these nonpolar polymer sur faces directly to other substances like adhesives, printing inks, and paints because they generally consist of polar compounds. On the other hand, polymer surfaces generally adsorb proteins when brought into direct contact with a bio logical system, resulting in cell attachment or platelet aggregation. The protein adsorption and attachment of biological components trigger a subsequent series of mostly adverse biological reactions toward the polymeric materials. Therefore, the technologies for surface modification of polymers or regulation of the polymer surface interaction with other substances have been of prime importance in polymer applications from the advent of polymer industries. Some of the technologies have been directed to introduction of new function alities onto polymer surfaces. The new functionalities introduced include improved surface hydrophilicity, hydrophobicity, bio compatibility, conductivi ty, anti-fogging, anti-fouling, grazing, surface hardness, surface roughness, adhesion, lubrication, and antistatic property. Theoretically, there is a large dif ference in properties between the surface and the bulk of a material and only the outermost surface is enough to be taken into consideration when the sur face properties are concerned. However, this is not the case for polymer surfaces, as the physical structure of the outermost polymer surface is generally not fixed but continuously changing with time due to the microscopic Brownian motion of polymer segments.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
20 May 1998
Pages
189
ISBN
9783540640165

Most of the untreated surfaces of polymers used in industry are not hydrophilic but hydrophobic. It is, therefore, difficult to bond these nonpolar polymer sur faces directly to other substances like adhesives, printing inks, and paints because they generally consist of polar compounds. On the other hand, polymer surfaces generally adsorb proteins when brought into direct contact with a bio logical system, resulting in cell attachment or platelet aggregation. The protein adsorption and attachment of biological components trigger a subsequent series of mostly adverse biological reactions toward the polymeric materials. Therefore, the technologies for surface modification of polymers or regulation of the polymer surface interaction with other substances have been of prime importance in polymer applications from the advent of polymer industries. Some of the technologies have been directed to introduction of new function alities onto polymer surfaces. The new functionalities introduced include improved surface hydrophilicity, hydrophobicity, bio compatibility, conductivi ty, anti-fogging, anti-fouling, grazing, surface hardness, surface roughness, adhesion, lubrication, and antistatic property. Theoretically, there is a large dif ference in properties between the surface and the bulk of a material and only the outermost surface is enough to be taken into consideration when the sur face properties are concerned. However, this is not the case for polymer surfaces, as the physical structure of the outermost polymer surface is generally not fixed but continuously changing with time due to the microscopic Brownian motion of polymer segments.

Read More
Format
Hardback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
20 May 1998
Pages
189
ISBN
9783540640165