Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This is a self-contained introduction to the asymptotic approximation of multivariate integrals for both mathematicians and applied scientists. A collection of results of the Laplace methods is given. Such methods are useful in reliability, statistics, theoretical physics and information theory. An important special case is the approximation of multidimensional normal integrals. Here the relation between the differential geometry of the boundary of the integration domain and the asymptotic probability content is derived.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This is a self-contained introduction to the asymptotic approximation of multivariate integrals for both mathematicians and applied scientists. A collection of results of the Laplace methods is given. Such methods are useful in reliability, statistics, theoretical physics and information theory. An important special case is the approximation of multidimensional normal integrals. Here the relation between the differential geometry of the boundary of the integration domain and the asymptotic probability content is derived.