Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The book offers a simultaneous presentation of the theory and of the numerical treatment of elliptic problems. The author starts with a discussion of the Laplace equation in the classical formulation and its discretisation by finite differences and deals with topics of gradually increasing complexity in the following chapters. He introduces the variational formulation of boundary value problems together with the necessary background from functional analysis and describes the finite element method including the most important error estimates. A more advanced chapter leads the reader into the theory of regularity. The reader will also find more details about the discretisation of singularly perturbed equations and eigenvalue problems. The author discusses the Stokes problem as an example of a saddle point problem taking into account its relevance to applications in fluid dynamics.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The book offers a simultaneous presentation of the theory and of the numerical treatment of elliptic problems. The author starts with a discussion of the Laplace equation in the classical formulation and its discretisation by finite differences and deals with topics of gradually increasing complexity in the following chapters. He introduces the variational formulation of boundary value problems together with the necessary background from functional analysis and describes the finite element method including the most important error estimates. A more advanced chapter leads the reader into the theory of regularity. The reader will also find more details about the discretisation of singularly perturbed equations and eigenvalue problems. The author discusses the Stokes problem as an example of a saddle point problem taking into account its relevance to applications in fluid dynamics.