Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This work relates different approaches for the modelling of parallel processes. On the one hand there are the so-called process algebras or abstract programming languages with Milner’s Calculus of Communicating Systems (CCS) and the theoretical version of Hoare’s Communicating Sequential Processes (CSP) as main representatives. On the other hand there are machine models, i. e. the classical finite state automata (transition systems), for which, however, more discriminating notions of equivalence than equality of languages are used; and secondly, there are differently powerful types of Petri nets, namely safe and general (place/transition) nets respectively, and predicate/transition nets. Within a uniform framework the syntax and the operational semantics of CCS and TCSP are explained. We consider both, Milner’s well-known interleaving semantics, which is based on infinite transition systems, as well as the new distributed semantics introduced by Degano et al. , which is based on infinite safe nets. The main part of this work contains three syntax-driven constructions of transition systems, safe nets, and predicate/transition nets respectively. Each of them is accompanied by a proof of consistency. Due to intrinsic limits, which are also investigated here, neither for transition systems and finite nets, nor for general nets does a finite consistent representation of all CCS and TCSP programs exist. However sublanguages which allow finite representations are discerned. On the other hand the construction of predicate/transition nets is possible for all CCS programs in which every choice and every recursive body starts sequentially.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This work relates different approaches for the modelling of parallel processes. On the one hand there are the so-called process algebras or abstract programming languages with Milner’s Calculus of Communicating Systems (CCS) and the theoretical version of Hoare’s Communicating Sequential Processes (CSP) as main representatives. On the other hand there are machine models, i. e. the classical finite state automata (transition systems), for which, however, more discriminating notions of equivalence than equality of languages are used; and secondly, there are differently powerful types of Petri nets, namely safe and general (place/transition) nets respectively, and predicate/transition nets. Within a uniform framework the syntax and the operational semantics of CCS and TCSP are explained. We consider both, Milner’s well-known interleaving semantics, which is based on infinite transition systems, as well as the new distributed semantics introduced by Degano et al. , which is based on infinite safe nets. The main part of this work contains three syntax-driven constructions of transition systems, safe nets, and predicate/transition nets respectively. Each of them is accompanied by a proof of consistency. Due to intrinsic limits, which are also investigated here, neither for transition systems and finite nets, nor for general nets does a finite consistent representation of all CCS and TCSP programs exist. However sublanguages which allow finite representations are discerned. On the other hand the construction of predicate/transition nets is possible for all CCS programs in which every choice and every recursive body starts sequentially.