Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Leicht nachvollziehbar fuhrt das Lehrbuch in Standardthemen wie Trennung der Variablen, Fourier Analysis und Maximumprinzipien ein. Es stellt numerische Verfahren parallel zur klassischen Theorie vor, veranschaulicht die Eigenschaften von Differentialgleichungen anhand numerischer Experimente und entwickelt die Theorie der finiten Differentialapproximationen. Die Einfuhrung numerischer Verfahren zeigt die Bedeutung des Rechnens bei partiellen Differentialgleichungen und illustriert die Interaktion zwischen mathematischer Theorie und der Entwicklung numerischer Verfahren.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Leicht nachvollziehbar fuhrt das Lehrbuch in Standardthemen wie Trennung der Variablen, Fourier Analysis und Maximumprinzipien ein. Es stellt numerische Verfahren parallel zur klassischen Theorie vor, veranschaulicht die Eigenschaften von Differentialgleichungen anhand numerischer Experimente und entwickelt die Theorie der finiten Differentialapproximationen. Die Einfuhrung numerischer Verfahren zeigt die Bedeutung des Rechnens bei partiellen Differentialgleichungen und illustriert die Interaktion zwischen mathematischer Theorie und der Entwicklung numerischer Verfahren.