Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
A well written, readable and easily accessible introduction to Choquet theory , which treats the representation of elements of a compact convex set as integral averages over extreme points of the set. The interest in this material arises both from its appealing geometrical nature as well as its extraordinarily wide range of application to areas ranging from approximation theory to ergodic theory. Many of these applications are treated in this book. This second edition is an expanded and updated version of what has become a classic basic reference in the subject.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
A well written, readable and easily accessible introduction to Choquet theory , which treats the representation of elements of a compact convex set as integral averages over extreme points of the set. The interest in this material arises both from its appealing geometrical nature as well as its extraordinarily wide range of application to areas ranging from approximation theory to ergodic theory. Many of these applications are treated in this book. This second edition is an expanded and updated version of what has become a classic basic reference in the subject.