Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book teaches the basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations. Standard topics such as separation of variables, Fourier analysis, maximum principles, and energy estimates are included. Numerical methods are introduced in parallel to the classical theory. The numerical experiments are used to illustrate properties of differential equations and theory for finite difference approximations is developed. Numerical methods are included in the book to show the significance of computations in partial differential equations and to illustrate the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between the analytical and numerical techniques. The authors present the material at an easy pace with well-organized exercises ranging from the straightforward to the challenging. In addition, special projects are included, containing step by step hints and instructions, to help guide students in the correct way of approaching partial differential equations. The text would be suitable for advanced undergraduate and graduate courses in mathematics and engineering. Necessary prerequisites for this text are basic calculus and linear algebra. Some elementary knowledge of ordinary differential equations is also preferable.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book teaches the basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations. Standard topics such as separation of variables, Fourier analysis, maximum principles, and energy estimates are included. Numerical methods are introduced in parallel to the classical theory. The numerical experiments are used to illustrate properties of differential equations and theory for finite difference approximations is developed. Numerical methods are included in the book to show the significance of computations in partial differential equations and to illustrate the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between the analytical and numerical techniques. The authors present the material at an easy pace with well-organized exercises ranging from the straightforward to the challenging. In addition, special projects are included, containing step by step hints and instructions, to help guide students in the correct way of approaching partial differential equations. The text would be suitable for advanced undergraduate and graduate courses in mathematics and engineering. Necessary prerequisites for this text are basic calculus and linear algebra. Some elementary knowledge of ordinary differential equations is also preferable.