Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Red Cell Rheology
Paperback

Red Cell Rheology

$407.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2].

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
1 October 1978
Pages
440
ISBN
9783540090014

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2].

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
1 October 1978
Pages
440
ISBN
9783540090014