Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results.