Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Elliptic Curves Over Number Fields with Prescribed Reduction Type
Paperback

Elliptic Curves Over Number Fields with Prescribed Reduction Type

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK? The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK’ It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) - In case K this connection can be stated as follows. For any ideal a = (N) in let ro(N) be the congruence subgroup ro(N) { (: ) E 5L2 ( ) c E (N) } of 5L2 ( ) and let 52 (fo (N be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N for the Heckealgebra and the - 2 - Lsug ny classes uf elliptic curves over with conductor a = (N) .

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1983
Pages
213
ISBN
9783528085698

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK? The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK’ It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) - In case K this connection can be stated as follows. For any ideal a = (N) in let ro(N) be the congruence subgroup ro(N) { (: ) E 5L2 ( ) c E (N) } of 5L2 ( ) and let 52 (fo (N be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N for the Heckealgebra and the - 2 - Lsug ny classes uf elliptic curves over with conductor a = (N) .

Read More
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1983
Pages
213
ISBN
9783528085698