Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Comprehensive resource covering the latest development of surface engineering inspired by nature with a special focus on wetting control
Drawing from the natural abilities of plants and animals around the world, Controlled Surface Wetting takes a deep dive into wetting-controlled systems of biological surfaces with information on mechanisms, theory, surface design, fabrication, and effects. This book guides readers to design better engineering surfaces for applications in self-cleaning, water harvesting and repellency, anti-icing, liquid-transport, and beyond.
Exploring the latest literature, this book introduces bioinspired techniques and methods to design wetting-controlled surfaces by using organic or inorganic materials, including those with high/low surface energy, regular/irregular, ordered/disordered, or rough/smooth surfaces, or endless arrangements and combinations of micro- and nanostructures of various styles.
This book begins by introducing biological surfaces such as plant leaves and duck feathers, butterfly wings, and spider silks, as well as their functions, including superhydrophobic properties, water repellency, and capturing tiny water droplets, respectively, progressing through to more advanced topics such as dually-mobile super-repellency, multi-liquid repellency, and switchable repellency in both air and liquid.
Controlled Surface Wetting includes discussion on:
Fundamental wetting theories, extension and theoretical models, wetting dynamics and kinetics, physics of wetting, wetting adhesion, and wetting chemistry Static and dynamic gradients, texture gradients such as gradient polymers, wedge- and helical-induced gradients, and synergism of multi-gradients Formation, control, and instability of Rayleigh instability, microfluidics, fluid-coating, electrospinning, fluid diffusion, and laser techniques Coalesced-droplet vertical transport, the hierarchical droplet size-effect, atmospheric water harvesting, and energy harvesting Artificial skins and sensors, including artificial skin vision, and medical applications, including directional-controllable drug delivery
Controlled Surface Wetting is an up-to-date and completely comprehensive resource for students and researchers in chemistry, physics, and materials science seeking to learn about the design of smart and advanced materials for engineering applications.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Comprehensive resource covering the latest development of surface engineering inspired by nature with a special focus on wetting control
Drawing from the natural abilities of plants and animals around the world, Controlled Surface Wetting takes a deep dive into wetting-controlled systems of biological surfaces with information on mechanisms, theory, surface design, fabrication, and effects. This book guides readers to design better engineering surfaces for applications in self-cleaning, water harvesting and repellency, anti-icing, liquid-transport, and beyond.
Exploring the latest literature, this book introduces bioinspired techniques and methods to design wetting-controlled surfaces by using organic or inorganic materials, including those with high/low surface energy, regular/irregular, ordered/disordered, or rough/smooth surfaces, or endless arrangements and combinations of micro- and nanostructures of various styles.
This book begins by introducing biological surfaces such as plant leaves and duck feathers, butterfly wings, and spider silks, as well as their functions, including superhydrophobic properties, water repellency, and capturing tiny water droplets, respectively, progressing through to more advanced topics such as dually-mobile super-repellency, multi-liquid repellency, and switchable repellency in both air and liquid.
Controlled Surface Wetting includes discussion on:
Fundamental wetting theories, extension and theoretical models, wetting dynamics and kinetics, physics of wetting, wetting adhesion, and wetting chemistry Static and dynamic gradients, texture gradients such as gradient polymers, wedge- and helical-induced gradients, and synergism of multi-gradients Formation, control, and instability of Rayleigh instability, microfluidics, fluid-coating, electrospinning, fluid diffusion, and laser techniques Coalesced-droplet vertical transport, the hierarchical droplet size-effect, atmospheric water harvesting, and energy harvesting Artificial skins and sensors, including artificial skin vision, and medical applications, including directional-controllable drug delivery
Controlled Surface Wetting is an up-to-date and completely comprehensive resource for students and researchers in chemistry, physics, and materials science seeking to learn about the design of smart and advanced materials for engineering applications.