Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Microbial Electrochemical Technologies, 2 Volumes
Hardback

Microbial Electrochemical Technologies, 2 Volumes

$843.99
Sign in or become a Readings Member to add this title to your wishlist.

A one-stop guide to the future of sustainable energy production

The search for sustainable energy sources powered by renewable, non-fossil fuel resources is one of the great scientific challenges of the era. Microorganisms such as bacteria and algae have been shown to function as the basis of a microbial fuel cell, which can operate independently of an electrical power grid on the basis of renewable feed sources. These fuel cells have shown applications ranging from powering implantable biomedical devices to purifying rural water sources, and many more.

Microbial Electrochemical Technologies offers a one-stop shop for researchers and developers of technologies incorporating these microbial fuel cells. Beginning with the fundamental processes involved in microbial energy production and the key components of a bioelectrochemical system (BES), it then surveys the major BES types and crucial aspects of technological development and commercialization. The result is an indispensable introduction to these vital power sources and their myriad applications.

Microbial Electrochemical Technologies readers will also find:

Detailed treatment of BES types including fuel cells, electrolysis and electrosynthesis cells, and more Discussion of commercialization aspects including modelling, performance analysis, and life cycle assessment An authorial team with decades of combined experience on three continents

Microbial Electrochemical Technologies is a useful reference for electrochemists, microbiologists, biotechnologists, and bioengineers.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Wiley-VCH Verlag GmbH
Country
DE
Date
27 November 2023
Pages
768
ISBN
9783527350735

A one-stop guide to the future of sustainable energy production

The search for sustainable energy sources powered by renewable, non-fossil fuel resources is one of the great scientific challenges of the era. Microorganisms such as bacteria and algae have been shown to function as the basis of a microbial fuel cell, which can operate independently of an electrical power grid on the basis of renewable feed sources. These fuel cells have shown applications ranging from powering implantable biomedical devices to purifying rural water sources, and many more.

Microbial Electrochemical Technologies offers a one-stop shop for researchers and developers of technologies incorporating these microbial fuel cells. Beginning with the fundamental processes involved in microbial energy production and the key components of a bioelectrochemical system (BES), it then surveys the major BES types and crucial aspects of technological development and commercialization. The result is an indispensable introduction to these vital power sources and their myriad applications.

Microbial Electrochemical Technologies readers will also find:

Detailed treatment of BES types including fuel cells, electrolysis and electrosynthesis cells, and more Discussion of commercialization aspects including modelling, performance analysis, and life cycle assessment An authorial team with decades of combined experience on three continents

Microbial Electrochemical Technologies is a useful reference for electrochemists, microbiologists, biotechnologists, and bioengineers.

Read More
Format
Hardback
Publisher
Wiley-VCH Verlag GmbH
Country
DE
Date
27 November 2023
Pages
768
ISBN
9783527350735