Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Seitdem die Notwendigkeit erkannt wurde, in den Mathematikunterricht der Grund- schule geometrische Inhalte aufzunehmen, werden dort auch topologische Probleme behandelt. Das Einbeziehen von topologischen Fragestellungen neben den euklidischen Inhalten wird dabei meist entwicklungspsychologisch begriindet, da z. B. Begriffe wie offen und abgeschlossen vor euklidischen Begriffen wie geradlinig und senkrecht zu- einander gebildet werden. Behandelt werden dabei einfache Probleme, bei denen man ohne groBen Begriffsapparat auskommt. Auf diese Weise kommen zum einen Aufga- ben, die der Schulung des raumlichen Vorstellungsvermogens dienen, zum anderen neue Typen von stark anwendungsbezogenen Sachproblemen mit meist offener Auf- gabenstellung in den Unterricht. Dieses Buch vermittelt einen Dberblick tiber die sogenannte anschauliche Topologie, die sich mit topologischen Problemen im Anschauungsraum beschaftigt. AuBerdem wird gezeigt, wie man der Topologie als Grundstruktur auf einem moglichst anschau- lichen Weg eine axiomatische Fundierung geben kann. Dabei werden nur diejenigen elementaren Begriffe der allgemeinen Topologie behandelt, die notig sind, urn den Zusammenhang zwischen anschaulicher und allgemeiner Topologie deutlich werden zu lassen. Die meisten Abschnitte sind - entsprechend der Konzeption der ML-Reihe - in drei Teile gegliedert: Auf eine anschauliche HinfOOrung in einem A-Teil folgt eine strenge DurchfOOrung im B-Teil. AbschlieBend werden im C-Teil Beispiele fUr eine mogliche Behandlung in der Schule gegeben.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Seitdem die Notwendigkeit erkannt wurde, in den Mathematikunterricht der Grund- schule geometrische Inhalte aufzunehmen, werden dort auch topologische Probleme behandelt. Das Einbeziehen von topologischen Fragestellungen neben den euklidischen Inhalten wird dabei meist entwicklungspsychologisch begriindet, da z. B. Begriffe wie offen und abgeschlossen vor euklidischen Begriffen wie geradlinig und senkrecht zu- einander gebildet werden. Behandelt werden dabei einfache Probleme, bei denen man ohne groBen Begriffsapparat auskommt. Auf diese Weise kommen zum einen Aufga- ben, die der Schulung des raumlichen Vorstellungsvermogens dienen, zum anderen neue Typen von stark anwendungsbezogenen Sachproblemen mit meist offener Auf- gabenstellung in den Unterricht. Dieses Buch vermittelt einen Dberblick tiber die sogenannte anschauliche Topologie, die sich mit topologischen Problemen im Anschauungsraum beschaftigt. AuBerdem wird gezeigt, wie man der Topologie als Grundstruktur auf einem moglichst anschau- lichen Weg eine axiomatische Fundierung geben kann. Dabei werden nur diejenigen elementaren Begriffe der allgemeinen Topologie behandelt, die notig sind, urn den Zusammenhang zwischen anschaulicher und allgemeiner Topologie deutlich werden zu lassen. Die meisten Abschnitte sind - entsprechend der Konzeption der ML-Reihe - in drei Teile gegliedert: Auf eine anschauliche HinfOOrung in einem A-Teil folgt eine strenge DurchfOOrung im B-Teil. AbschlieBend werden im C-Teil Beispiele fUr eine mogliche Behandlung in der Schule gegeben.