Halbringe: Algebraische Theorie Und Anwendungen in Der Informatik
Hanns Joachim Weinert (Tech Univ of Clausthal Germany),Hanns Joachim Weinert
Halbringe: Algebraische Theorie Und Anwendungen in Der Informatik
Hanns Joachim Weinert (Tech Univ of Clausthal Germany),Hanns Joachim Weinert
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Der Begriff des Halbringes entsteht aus dem des Ringes, indem man auf die Gruppeneigenschaft (und seltener auch auf die Kommutativitiit) der Addition verzichtet. So bilden die natiirlichen Zahlen einen Halbring, die sicherlich iilteste algebraische Struktur, in der Menschen gerechnet haben. Zahlreiche Arbeiten tiber Halbril1ge sind seit etwa 50 Jahren erschienel1. AniaB dazu war, jedenfalls teilweise, das Auftretel1 von Halbringen als Positivbereiche partiell geordneter Ringe und Korper, bei topologischen Fragestellungen, und nicht zuletzt beim Aufbau der Arithmetik im Zusammenhang mit entsprechenden Fragen des Schulunterrichts. Besonderes Interesse verdienen Halbringe da- durch, daB sie unterdessen in wachsendem MaBe, oft ohne Bezug auf die bereits vorhandene Literatur, als Hilfsmittel in verschiedenen Gebieten der Informatik verwendet werden. In dieser Situation mochten wir eine Einfiihrung in die algebraische Theorie der Halbringe vorlegen, in der auch einige Anwendungen in der Theoretischen Informatik ausfiihrlich behandelt werden. Dabei haben wir uns inhaltlich weitgehend auf die allgemeinen Grundlagen einer algebraisehen Halbringtheo- rie und auf solche Teilgebiete dieser Theorie besehriinkt, die ftir die eben genannten Anwendungen benotigt werden. Weiterhin legen wir hier, wie ja aueh bei der Behandlung von Ringen iiblieh, einen Halbringbegriff zugrunde, der die Kommutativitiit der Addition einsehlieBt (vgl. Definition 2. 1 im ersten Kapitel). Damit haben wir die gelegentlich in der Literatur auch auftreten- den Halbril1ge mit nichtkollllllutativer Addition ausgeklammert, deren Unter- suchung zwar fiir sieh reizvoll, dartiber hinaus jedoch von weit geringerem Interesse ist und oft erheblich mehr Aufwand erfordert.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.