Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Asteroid Belt History and Terrestrial Bombardment
Paperback

Asteroid Belt History and Terrestrial Bombardment

$66.99
Sign in or become a Readings Member to add this title to your wishlist.

The main asteroid belt, spanning approximately 2-4 AU in heliocentric distance, serves as a sparse repository of rocky debris, offering invaluable insights into the solar system's past. Evidence drawn from the dynamical structure of both the main belt and the Kuiper belt beyond Neptune suggests a narrative of planetary migration, wherein the giant planets initially existed in a more compact formation before experiencing migration driven by planetesimals. This migration event swept both mean motion and secular resonances across the main asteroid belt, inducing a rise in asteroid eccentricity and depletion of the belt itself. Examination of present-day distributions of large main belt asteroids aligns with this narrative, offering further support for resonance sweeping during the epoch of giant planet migration. Utilizing an analytical model of ?6 secular resonance sweeping, constraints on Saturn's migration speed can be inferred. Post-migration, dynamical chaos emerged as the primary loss mechanism for asteroids with diameters exceeding 10 km, with a logarithmic decay law effectively describing the dynamical loss history of test particles from this region. This model implies a potential decline in the rate of impacts from large asteroids over the last approximately 3 billion years, suggesting a present-day impact flux significantly lower than previously estimated, impacting crater chronologies and hazard risk assessments. Additionally, quantification of the solar wind's 6Li/7Li ratio reflects the influx of chondritic material and enhanced dust production during planetesimal-driven giant planet migration, contributing to the current depletion of lithium in the solar photosphere relative to chondrites. The expectation of 6Li being less abundant in the sun compared to 7Li due to differing nuclear reaction rates further supports this narrative. Furthermore, evidence pointing to a short-lived impact cataclysm affecting the entire inner solar system may be discernible in t

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Tredition Gmbh
Date
30 May 2024
Pages
132
ISBN
9783384244260

The main asteroid belt, spanning approximately 2-4 AU in heliocentric distance, serves as a sparse repository of rocky debris, offering invaluable insights into the solar system's past. Evidence drawn from the dynamical structure of both the main belt and the Kuiper belt beyond Neptune suggests a narrative of planetary migration, wherein the giant planets initially existed in a more compact formation before experiencing migration driven by planetesimals. This migration event swept both mean motion and secular resonances across the main asteroid belt, inducing a rise in asteroid eccentricity and depletion of the belt itself. Examination of present-day distributions of large main belt asteroids aligns with this narrative, offering further support for resonance sweeping during the epoch of giant planet migration. Utilizing an analytical model of ?6 secular resonance sweeping, constraints on Saturn's migration speed can be inferred. Post-migration, dynamical chaos emerged as the primary loss mechanism for asteroids with diameters exceeding 10 km, with a logarithmic decay law effectively describing the dynamical loss history of test particles from this region. This model implies a potential decline in the rate of impacts from large asteroids over the last approximately 3 billion years, suggesting a present-day impact flux significantly lower than previously estimated, impacting crater chronologies and hazard risk assessments. Additionally, quantification of the solar wind's 6Li/7Li ratio reflects the influx of chondritic material and enhanced dust production during planetesimal-driven giant planet migration, contributing to the current depletion of lithium in the solar photosphere relative to chondrites. The expectation of 6Li being less abundant in the sun compared to 7Li due to differing nuclear reaction rates further supports this narrative. Furthermore, evidence pointing to a short-lived impact cataclysm affecting the entire inner solar system may be discernible in t

Read More
Format
Paperback
Publisher
Tredition Gmbh
Date
30 May 2024
Pages
132
ISBN
9783384244260