Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Knowledge Transfer between Computer Vision and Text Mining: Similarity-based Learning Approaches
Paperback

Knowledge Transfer between Computer Vision and Text Mining: Similarity-based Learning Approaches

$397.99
Sign in or become a Readings Member to add this title to your wishlist.

This ground-breaking text/reference diverges from the traditional view that computer vision (for image analysis) and string processing (for text mining) are separate and unrelated fields of study, propounding that images and text can be treated in a similar manner for the purposes of information retrieval, extraction and classification. Highlighting the benefits of knowledge transfer between the two disciplines, the text presents a range of novel similarity-based learning (SBL) techniques founded on this approach. Topics and features: describes a variety of SBL approaches, including nearest neighbor models, local learning, kernel methods, and clustering algorithms; presents a nearest neighbor model based on a novel dissimilarity for images; discusses a novel kernel for (visual) word histograms, as well as several kernels based on a pyramid representation; introduces an approach based on string kernels for native language identification; contains links for downloading relevant open source code.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer International Publishing AG
Country
Switzerland
Date
27 May 2018
Pages
250
ISBN
9783319807911

This ground-breaking text/reference diverges from the traditional view that computer vision (for image analysis) and string processing (for text mining) are separate and unrelated fields of study, propounding that images and text can be treated in a similar manner for the purposes of information retrieval, extraction and classification. Highlighting the benefits of knowledge transfer between the two disciplines, the text presents a range of novel similarity-based learning (SBL) techniques founded on this approach. Topics and features: describes a variety of SBL approaches, including nearest neighbor models, local learning, kernel methods, and clustering algorithms; presents a nearest neighbor model based on a novel dissimilarity for images; discusses a novel kernel for (visual) word histograms, as well as several kernels based on a pyramid representation; introduces an approach based on string kernels for native language identification; contains links for downloading relevant open source code.

Read More
Format
Paperback
Publisher
Springer International Publishing AG
Country
Switzerland
Date
27 May 2018
Pages
250
ISBN
9783319807911