Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis describes experimental work in the field of trapped-ion quantum computation. It outlines the theory of Raman interactions, examines the various sources of error in two-qubit gates, and describes in detail experimental explorations of the sources of infidelity in implementations of single- and two-qubit gates. Lastly, it presents an experimental demonstration of a mixed-species entangling gate.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis describes experimental work in the field of trapped-ion quantum computation. It outlines the theory of Raman interactions, examines the various sources of error in two-qubit gates, and describes in detail experimental explorations of the sources of infidelity in implementations of single- and two-qubit gates. Lastly, it presents an experimental demonstration of a mixed-species entangling gate.