Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The theory of approximation of functions is one of the central branches in mathematical analysis and has been developed over a number of decades. This monograph deals with a series of problems related to one of the directions of the theory, namely, the approximation of periodic functions by trigonometric polynomials generated by linear methods of summation of Fourier series. More specific, the following linear methods are investigated: classical methods of Fourier, Fejir, Riesz, and Roginski. For these methods the so-called Kolmogorov-Nikol'skii problem is considered, which consists of finding exact and asymptotically exact qualities for the upper bounds of deviations of polynomials generated by given linear methods on given classes of 2?-periodic functions. Much attention is also given to the multidimensional case. The material presented in this monograph did not lose its importance since the publication of the Russian edition (1981). Moreover, new material has been added and several corrections were made. In this field of mathematics numerous deep results were obtained, many important and complicated problems were solved, and new methods were developed, which can be extremely useful for many mathematicians. All principle problems considered in this monograph are given in the final form, i.e. in the form of exact asymptotic equalities, and, therefore, retain their importance and interest for a long time.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The theory of approximation of functions is one of the central branches in mathematical analysis and has been developed over a number of decades. This monograph deals with a series of problems related to one of the directions of the theory, namely, the approximation of periodic functions by trigonometric polynomials generated by linear methods of summation of Fourier series. More specific, the following linear methods are investigated: classical methods of Fourier, Fejir, Riesz, and Roginski. For these methods the so-called Kolmogorov-Nikol'skii problem is considered, which consists of finding exact and asymptotically exact qualities for the upper bounds of deviations of polynomials generated by given linear methods on given classes of 2?-periodic functions. Much attention is also given to the multidimensional case. The material presented in this monograph did not lose its importance since the publication of the Russian edition (1981). Moreover, new material has been added and several corrections were made. In this field of mathematics numerous deep results were obtained, many important and complicated problems were solved, and new methods were developed, which can be extremely useful for many mathematicians. All principle problems considered in this monograph are given in the final form, i.e. in the form of exact asymptotic equalities, and, therefore, retain their importance and interest for a long time.