Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Symmetry and Asymmetry in Quasicrystals or Amorphous Materials
Hardback

Symmetry and Asymmetry in Quasicrystals or Amorphous Materials

$79.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

About forty years after its discovery, it is still common to read in the literature that quasicrystals (QCs) occupy an intermediate position between amorphous materials and periodic crystals. However, QCs exhibit high-quality diffraction patterns containing a collection of discrete Bragg reflections at variance with amorphous phases. Accordingly, these materials must be properly regarded as long-range ordered materials with a symmetry incompatible with translation invariance. This misleading conceptual status can probably arise from the use of notions borrowed from the amorphous solids framework (such us tunneling states, weak interference effects, variable range hopping, or spin glass) in order to explain certain physical properties observed in QCs. On the other hand, the absence of a general, full-fledged theory of quasiperiodic systems certainly makes it difficult to clearly distinguish the features related to short-range order atomic arrangements from those stemming from long-range order correlations. The contributions collected in this book aim at gaining a deeper understanding on the relationship between the underlying structural order and the resulting physical properties in several illustrative aperiodic systems, including the border line between QCs and related complex metallic alloys, hierarchical superlattices, electrical transmission lines, nucleic acid sequences, photonic quasicrystals, and optical devices based on aperiodic order designs.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Mdpi AG
Date
10 September 2020
Pages
120
ISBN
9783039430567

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

About forty years after its discovery, it is still common to read in the literature that quasicrystals (QCs) occupy an intermediate position between amorphous materials and periodic crystals. However, QCs exhibit high-quality diffraction patterns containing a collection of discrete Bragg reflections at variance with amorphous phases. Accordingly, these materials must be properly regarded as long-range ordered materials with a symmetry incompatible with translation invariance. This misleading conceptual status can probably arise from the use of notions borrowed from the amorphous solids framework (such us tunneling states, weak interference effects, variable range hopping, or spin glass) in order to explain certain physical properties observed in QCs. On the other hand, the absence of a general, full-fledged theory of quasiperiodic systems certainly makes it difficult to clearly distinguish the features related to short-range order atomic arrangements from those stemming from long-range order correlations. The contributions collected in this book aim at gaining a deeper understanding on the relationship between the underlying structural order and the resulting physical properties in several illustrative aperiodic systems, including the border line between QCs and related complex metallic alloys, hierarchical superlattices, electrical transmission lines, nucleic acid sequences, photonic quasicrystals, and optical devices based on aperiodic order designs.

Read More
Format
Hardback
Publisher
Mdpi AG
Date
10 September 2020
Pages
120
ISBN
9783039430567