Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In a world dominated by uncertainty, modeling and understanding the optimal behavior of agents is of the utmost importance. Many problems in economics, finance, and actuarial science naturally require decision makers to undertake choices in stochastic environments. Examples include optimal individual consumption and retirement choices, optimal management of portfolios and risk, hedging, optimal timing issues in pricing American options, and investment decisions. Stochastic control theory provides the methods and results to tackle all such problems. This book is a collection of the papers published in the Special Issue Applications of Stochastic Optimal Control to Economics and Finance , which appeared in the open access journal Risks in 2019. It contains seven peer-reviewed papers dealing with stochastic control models motivated by important questions in economics and finance. Each model is rigorously mathematically funded and treated, and the numerical methods are employed to derive the optimal solution. The topics of the book’s chapters range from optimal public debt management to optimal reinsurance, real options in energy markets, and optimal portfolio choice in partial and complete information settings. From a mathematical point of view, techniques and arguments of dynamic programming theory, filtering theory, optimal stopping, one-dimensional diffusions and multi-dimensional jump processes are used.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In a world dominated by uncertainty, modeling and understanding the optimal behavior of agents is of the utmost importance. Many problems in economics, finance, and actuarial science naturally require decision makers to undertake choices in stochastic environments. Examples include optimal individual consumption and retirement choices, optimal management of portfolios and risk, hedging, optimal timing issues in pricing American options, and investment decisions. Stochastic control theory provides the methods and results to tackle all such problems. This book is a collection of the papers published in the Special Issue Applications of Stochastic Optimal Control to Economics and Finance , which appeared in the open access journal Risks in 2019. It contains seven peer-reviewed papers dealing with stochastic control models motivated by important questions in economics and finance. Each model is rigorously mathematically funded and treated, and the numerical methods are employed to derive the optimal solution. The topics of the book’s chapters range from optimal public debt management to optimal reinsurance, real options in energy markets, and optimal portfolio choice in partial and complete information settings. From a mathematical point of view, techniques and arguments of dynamic programming theory, filtering theory, optimal stopping, one-dimensional diffusions and multi-dimensional jump processes are used.