Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The dispersion of nanomaterials in liquid crystals, both of the thermotropic and the lyotropic kind, has attracted much interest over recent years. This is in part related to the success of liquid crystals in several applications, in particular flat screen displays, besides others. The dispersion of nanoparticles allows the fine-tuning of liquid crystalline properties and the addition of functionalities associated with the properties of the nanoparticles. These include the addition of ferroelectricity, magnetic properties, optic and plasmonic properties, for example through quantum dots and gold nanoparticles, but also directed conductivity, by exploiting the respective conductivity anisotropy of nanotubes. In addition, such behaviors can be achieved through transfer and templating of the self-organization of the liquid crystalline order onto dispersed anisotropic nanoparticles, allowing the formation of ordered nanostructures. Furthermore, the formation of partially ordered fluids can be induced by dispersing shape anisotropic nanoparticles in an isotropic solvent. Such lyotropic systems have recently experienced a revived interest. This genuinely multidisciplinary field of research has led to a wealth of novel systems in soft condensed matter and promises new applications in the areas of displays, optical elements, meta-materials, sensors, drug delivery, and many more. Various examples are presented in this publication.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The dispersion of nanomaterials in liquid crystals, both of the thermotropic and the lyotropic kind, has attracted much interest over recent years. This is in part related to the success of liquid crystals in several applications, in particular flat screen displays, besides others. The dispersion of nanoparticles allows the fine-tuning of liquid crystalline properties and the addition of functionalities associated with the properties of the nanoparticles. These include the addition of ferroelectricity, magnetic properties, optic and plasmonic properties, for example through quantum dots and gold nanoparticles, but also directed conductivity, by exploiting the respective conductivity anisotropy of nanotubes. In addition, such behaviors can be achieved through transfer and templating of the self-organization of the liquid crystalline order onto dispersed anisotropic nanoparticles, allowing the formation of ordered nanostructures. Furthermore, the formation of partially ordered fluids can be induced by dispersing shape anisotropic nanoparticles in an isotropic solvent. Such lyotropic systems have recently experienced a revived interest. This genuinely multidisciplinary field of research has led to a wealth of novel systems in soft condensed matter and promises new applications in the areas of displays, optical elements, meta-materials, sensors, drug delivery, and many more. Various examples are presented in this publication.