Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This Special Issue deals with the field of intelligent soft sensors that enable the online estimation of nonmeasurable process variables. Soft sensors or virtual sensors are common names for software algorithms in which multiple measurements are processed together. Typically, soft sensors are based on control theory and are also referred to as state observers. There may be dozens or even hundreds of measurements from hard sensors (big data). The interaction of signals can be used to compute new quantities that cannot be measured directly online or are difficult and expensive to measure. Soft sensors are particularly useful in data fusion, combining measurements of different characteristics and dynamics. They can be used for fault diagnosis (self-analysis, self-calibration, and self-maintenance) as well as for control applications. Well-known software algorithms that can be seen as soft sensors include, for example, Kalman filters. More recent implementations of soft sensors use neural networks, fuzzy logic, models based on evolving clustering, partial least squares, etc. In the digitized factories of the future, intelligent sensors represent one of the core building blocks for automating and optimizing production, as they make production more efficient in every respect.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This Special Issue deals with the field of intelligent soft sensors that enable the online estimation of nonmeasurable process variables. Soft sensors or virtual sensors are common names for software algorithms in which multiple measurements are processed together. Typically, soft sensors are based on control theory and are also referred to as state observers. There may be dozens or even hundreds of measurements from hard sensors (big data). The interaction of signals can be used to compute new quantities that cannot be measured directly online or are difficult and expensive to measure. Soft sensors are particularly useful in data fusion, combining measurements of different characteristics and dynamics. They can be used for fault diagnosis (self-analysis, self-calibration, and self-maintenance) as well as for control applications. Well-known software algorithms that can be seen as soft sensors include, for example, Kalman filters. More recent implementations of soft sensors use neural networks, fuzzy logic, models based on evolving clustering, partial least squares, etc. In the digitized factories of the future, intelligent sensors represent one of the core building blocks for automating and optimizing production, as they make production more efficient in every respect.