Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The aim of this reprint devoted to the topic "Polymers and the Environment" was to pursue environmentally friendly objectives for polymer-based materials under a two-fold perspective, applied and academic. In the 1980s, the first global environmental crisis occurred with an emphasis on the role of plastics in big cities' massive solid waste streams. It was apparent then (and now) that the best environmental management practices required solid scientific and technical knowledge. Moreover, once at the end of their useful life, these plastics become involved in their materials (polymers and additives) into a circular economy strategy conjugated with the non-steady scenarios of the other key sectors of the economy, industry, society, and policy. Thus, linking tandem polymers and the environment has led, 40 years later, to a wide polymer research field devoted to continuously improving the environmental performance of polymer and polymer-based materials. This strategy comprises all the steps in the polymer management chain, from the raw materials to the polymers, many of which come from classical and renewable sources (the so-called bioplastics). Additionally, there is a need to improve the processability, ultimate properties, and performance by employing friendly environment additives; the recyclability of the materials; and the development of innovative and disruptive processes allowing better mechanical and energy recovery, including chemical recycling. This reprint includes approaches related to this frontrunner polymer science and technology area.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The aim of this reprint devoted to the topic "Polymers and the Environment" was to pursue environmentally friendly objectives for polymer-based materials under a two-fold perspective, applied and academic. In the 1980s, the first global environmental crisis occurred with an emphasis on the role of plastics in big cities' massive solid waste streams. It was apparent then (and now) that the best environmental management practices required solid scientific and technical knowledge. Moreover, once at the end of their useful life, these plastics become involved in their materials (polymers and additives) into a circular economy strategy conjugated with the non-steady scenarios of the other key sectors of the economy, industry, society, and policy. Thus, linking tandem polymers and the environment has led, 40 years later, to a wide polymer research field devoted to continuously improving the environmental performance of polymer and polymer-based materials. This strategy comprises all the steps in the polymer management chain, from the raw materials to the polymers, many of which come from classical and renewable sources (the so-called bioplastics). Additionally, there is a need to improve the processability, ultimate properties, and performance by employing friendly environment additives; the recyclability of the materials; and the development of innovative and disruptive processes allowing better mechanical and energy recovery, including chemical recycling. This reprint includes approaches related to this frontrunner polymer science and technology area.