Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This Special Issue includes papers on physical phenomena, such as wind-driven flows, coastal flooding, and turbidity currents, and modeling techniques, such as model comparison, model coupling, parallel computation, and domain decomposition. These papers illustrate the need for modeling coastal ocean flows with multiple physical processes at different scales. Additionally, these papers reflect the current status of such modeling of coastal ocean flows, and they present a roadmap with numerical methods, data collection, and artificial intelligence as future endeavors.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This Special Issue includes papers on physical phenomena, such as wind-driven flows, coastal flooding, and turbidity currents, and modeling techniques, such as model comparison, model coupling, parallel computation, and domain decomposition. These papers illustrate the need for modeling coastal ocean flows with multiple physical processes at different scales. Additionally, these papers reflect the current status of such modeling of coastal ocean flows, and they present a roadmap with numerical methods, data collection, and artificial intelligence as future endeavors.